Research article Special Issues

On the numerical solutions of coupled nonlinear time-fractional reaction-diffusion equations

  • Received: 18 May 2021 Accepted: 16 June 2021 Published: 18 June 2021
  • MSC : 35R11, 22E70, 70G65, 34A08, 65L05

  • In this paper, we investigate the numerical solutions of coupled nonlinear time-fractional reaction-diffusion equations obtained by applying a procedure that combines the Lie symmetry analysis with the numerical methods. By Lie symmetries, the model, governed by two fractional differential equations defined in terms of the Riemann-Liouville fractional derivatives, is reduced into nonlinear fractional ordinary differential equations that, by introducing the Caputo derivative, are numerically solved by the implicit trapezoidal method. The solutions of the original model are computed by the inverse transformations. Numerical examples are performed in order to show the efficiency and the reliability of the proposed approach applied for solving a wide class of fractional models.

    Citation: Alessandra Jannelli, Maria Paola Speciale. On the numerical solutions of coupled nonlinear time-fractional reaction-diffusion equations[J]. AIMS Mathematics, 2021, 6(8): 9109-9125. doi: 10.3934/math.2021529

    Related Papers:

  • In this paper, we investigate the numerical solutions of coupled nonlinear time-fractional reaction-diffusion equations obtained by applying a procedure that combines the Lie symmetry analysis with the numerical methods. By Lie symmetries, the model, governed by two fractional differential equations defined in terms of the Riemann-Liouville fractional derivatives, is reduced into nonlinear fractional ordinary differential equations that, by introducing the Caputo derivative, are numerically solved by the implicit trapezoidal method. The solutions of the original model are computed by the inverse transformations. Numerical examples are performed in order to show the efficiency and the reliability of the proposed approach applied for solving a wide class of fractional models.



    加载中


    [1] B. I. Henry, S. L. Wearne, Fractional reaction-diffusion, Physica A, 276 (2000), 448–455. doi: 10.1016/S0378-4371(99)00469-0
    [2] B. I. Henry, S. L. Wearne, Existence of Turing instabilities in a two-species fractional reaction–diffusion system, Siam J. Appl. Math., 62 (2002), 870–887. doi: 10.1137/S0036139900375227
    [3] K. Seki, M. Wojcik, M. Tachiya, Fractional reaction-diffusion equation, J. Chem. Phys., 119 (2003), 2165. doi: 10.1063/1.1587126
    [4] V. Gafiychuk, B. Datsko, Pattern formation in a fractional reaction–diffusion system, Phys. A Statist. Mech. Appl., 365 (2006), 300–306. doi: 10.1016/j.physa.2005.09.046
    [5] V. Gafiychuk, B. Datsko, Stability analysis and oscillatory structures in time-fractional reaction–diffusion systems, Phys. Rev. E, 75 (2007), 055201-1–1-4.
    [6] V. Gafiychuk, B. Datsko, V. Meleshko, D. Blackmore, Analysis of the solutions of coupled nonlinear fractional reaction-diffusion equations, Chaos, Solitons Fractals, 41 (2009), 1095–1104. doi: 10.1016/j.chaos.2008.04.039
    [7] V. Gafiychuk, B. Datsko, Different types of instabilities and complex dynamics in reaction-diffusion systems with fractional derivatives, J. Comput. Nonlin. Dyn., 7 (2012), 031001. doi: 10.1115/1.4005923
    [8] B. Datsko, V. Gafiychuk, Complex nonlinear dynamics in subdiffusive activator–inhibitor systems, Commun. Nonlinear Sci. Numer. Simul., 17 (2012), 1673–1680. doi: 10.1016/j.cnsns.2011.08.037
    [9] Y. Zhang, J. Cao, W. Bu, A. Xiao, A fast finite difference/finite element method for the two-dimensional distributed-order time-space fractional reaction-diffusion equation, Int. J. Model. Simul. Sc. Comput., 11 (2020), 2050016. doi: 10.1142/S1793962320500166
    [10] F. Liu, P. Zhuang, I. Turner, K. Burrage, V. Anh, A new fractional finite volume method for solving the fractional diffusion equation, Appl. Math. Model., 38 (2014), 3871–3878. doi: 10.1016/j.apm.2013.10.007
    [11] A. Jannelli, Numerical Solutions of Fractional Differential Equations Arising in Engineering Sciences, Mathematics, 215 (2020).
    [12] M. Zheng, F. Liu, Q. Liu, K. Burrage, M. J. Simpson, Numerical solution of the time fractional reaction-diffusion equation with a moving boundary, J. Comput. Phys., 338 (2017), 493–510. doi: 10.1016/j.jcp.2017.03.006
    [13] S. Kumar, J. F. Gómez Aguilar, P. Pandey, Numerical solutions for the reaction–diffusion, diffusion-wave, and Cattaneo equations using a new operational matrix for the Caputo–Fabrizio derivative, Math. Met. Appl. Sci., 43 (2020).
    [14] L. Zeting, S. Yanfei, A numerical method for solving the time fractional reaction-diffusion equation with variable coefficients on the whole line, J. Physics: Conference Series, 1592 (2020), 012068. doi: 10.1088/1742-6596/1592/1/012068
    [15] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland mathematics studies. Elsevier, 2006.
    [16] N. Heymans, I Podlubny, Physical interpretation of initial conditions for fractional differential equations with Riemann-Liouville fractional derivatives, Rheologica Acta, 44 (2006), 765–771.
    [17] S. Samko, A. A. Kilbas, O. Marichev, Fractional Integrals and Derivatives, Taylor and Francis, 1993.
    [18] I. Podlubny, Fractional Differential Equations: An introduction to fractional derivatives, fractional differential equations, some methods of their solution and some of their applications, Academic Press, San Diego, 1999.
    [19] F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models, Imperial College Press, 2010.
    [20] K. S. Miller, B. Ross, An Introduction to the fractional Calculus and Fractional Differential Equations, John Wiley and Sons, 1993.
    [21] D. V. Lukyanenko, V. B. Grigorev, V. T. Volkov, M. A. Shishlenin, Solving of the coefficient inverse problem for a nonlinear singularly perturbed two-dimensional reaction–diffusion equation with the location of moving front data, Comp. Math. Appl., 77 (2019), 1245–1254. doi: 10.1016/j.camwa.2018.11.005
    [22] J. C. Averós, J. P. Llorens, R. Uribe-Kaffure, Numerical Simulation of Non-Linear Models of Reaction-Diffusion for a DGT Sensor, Algortihm, 13 (2020), 98. doi: 10.3390/a13040098
    [23] B. Kaltenbacher, W. Rundell, The inverse problem of reconstructing reaction-diffusion systems, Inverse Problems, 36 (2020), 065011. doi: 10.1088/1361-6420/ab8483
    [24] N. Levashova, A. Gorbachev, R. Argun, D. Lukyanenko, The problem of the non-uniqueness of the solution to the inverse problem of recovering the symmetric states of a bistable medium with data on the position of an autowave front, Symmetry, 13 (2021), 860. doi: 10.3390/sym13050860
    [25] A. Jannelli, M. Ruggieri, M. P. Speciale, Analytical and numerical solutions of fractional type advection-diffusion equation, AIP Conference Proceedings, 1863 (2017), 530005. doi: 10.1063/1.4992675
    [26] A. Jannelli, M. Ruggieri, M. P. Speciale, Exact and numerical solutions of time-fractional advection-diffusion equation with a nonlinear source term by means of the lie symmetries, Nonlinear Dyn., 92 (2018), 543–555. doi: 10.1007/s11071-018-4074-8
    [27] A. Jannelli, M. Ruggieri, M. P. Speciale, Numerical solutions of space fractional advection-diffusion equation with source term, AIP Conference Proceedings, 2116 (2019), 280007.
    [28] A. Jannelli, M. Ruggieri, M. P. Speciale, Numerical solutions of space fractional advection-diffusion equation, with nonlinear source term, Appl. Num. Math., 155 (2020), 93–102. doi: 10.1016/j.apnum.2020.01.016
    [29] A. Jannelli, M. Ruggieri, M. P. Speciale, Analytical and numerical solutions of time and space fractional advection-diffusion-reaction equation, Comm. Nonl. Sc. Num. Simul., 70 (2019), 89–101. doi: 10.1016/j.cnsns.2018.10.012
    [30] A. Jannelli, M. P. Speciale, Comparison between solutions of two-dimensional time-fractional diffusion–reaction equation through the Lie symmetries, Atti della Accademia Peloritana dei Pericolanti, 99 (2021), A4.
    [31] E. Buckwar, Y. Luchko, Invariance of a partial differential equation of fractional order under the lie group of scaling transformations, J. Math. Anal. Appl., 227 (1998), 81–97. doi: 10.1006/jmaa.1998.6078
    [32] R. K. Gazizov, A. A. Kasatkin, S. Y. Lukashchuk, Continuous transformation groups of fractional dfferential equations, Vestn. USATU, 9 (2007), 125–135.
    [33] R. K. Gazizov, A. A. Kasatkin, S. Y. Lukashchuk, Symmetry properties of fractional diffusion equations, Physica Scripta, 136 (2009), 014016.
    [34] R. K. Gazizov, A. A. Kasatkin, S. Y. Lukashchuk, Group-invariant solutions of fractional differential equations, Nonl. Sc. Compl., (2011), 51–59.
    [35] R. A. Leo, G. Sicuro, P. Tempesta, A theorem on the existence of symmetries of fractional PDEs, Comptes Rendus Math., 352 (2014), 219–222. doi: 10.1016/j.crma.2013.11.007
    [36] R. Sahadevan, P. Prakash, On Lie symmetry analysis and invariant subspace methods of coupled time fractional partial differential equations, Chaos, Solitons Fractals, 104 (2017), 107–120. doi: 10.1016/j.chaos.2017.07.019
    [37] K. T. Vu, G. F. Jefferson, J. Carminati, Finding generalized symmetries of differential equations using the MAPLE package DESOLVII, Comput. Phys. Commun., 183 (2012), 1044–1054. doi: 10.1016/j.cpc.2012.01.005
    [38] G. F. Jefferson, J. Carminati, ASP: Automated symbolic computation of approximate symmetries of differential equations, Comput. Phys. Comm., 184 (2013), 1045–1063. doi: 10.1016/j.cpc.2012.11.012
    [39] G. W. Wang, X. Q. Liu, Y. Y. Zhang, Lie symmetry analysis to the time fractional generalized fifth-order KdV equation, Commun. Nonlinear Sci. Numer. Simul., 18 (2013), 2321–2326. doi: 10.1016/j.cnsns.2012.11.032
    [40] R. Sahadevan, P. Prakash, Lie symmetry analysis and exact solution of certain fractional ordinary differential equations, Nonl. Dyn., 89 (2017), 305–319. doi: 10.1007/s11071-017-3455-8
    [41] B. A. Grzybowski, Chemistry in Motion: Reaction-Diffusion Systems for Micro-and Nanotechnology, John Wiley Sons, 2009.
    [42] M. E. Hohn, B. Li, W. Yang, Analysis of coupled reaction-diffusion equations for RNA interactions, J. Math. Anal. Appl., 451 (2015), 212–233.
    [43] R. S. Cantrell, C. Cosner, Spatial Ecology via Reaction–Diffusion Equation, John Wiley & Sons, 2004.
    [44] S. Kondo, T. Miura, Reaction-diffusion model as a framework for understanding biological pattern formation, Science, 329 (2010), 1616–1620. doi: 10.1126/science.1179047
    [45] V. Colizza, A. Barrat, M. Barthélemy, A. Vespignani, The role of the airline transportation network in the prediction and predictability of global epidemics, Proc. Natl. Acad. Sci., 103 (2006), 2015–2020. doi: 10.1073/pnas.0510525103
    [46] P. Wang, M. C. González, C. A. Hidalgo, A. L. Barabási, Understanding the spreading patterns of mobile phone viruses, Science, 324 (2009), 1071–1076. doi: 10.1126/science.1167053
    [47] R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific Singapore, 2000.
    [48] R. Garrappa, Trapezoidal methods for fractional differential equations: Theoretical and computational aspects, Math. Comput. Simul., 110 (2015), 96–112. doi: 10.1016/j.matcom.2013.09.012
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2856) PDF downloads(266) Cited by(4)

Article outline

Figures and Tables

Figures(6)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog