Our goal of this article is to introduce a new product operator that will be called $ {D^n_u} S_{\phi} $ the product of weighted differentiation and superposition operators from $ {H}^{\infty} $ to Zygmund spaces. Moreover, we characterize a necessary and sufficient conditions for $ {D^n_u} S_{\phi} $ operators from $ {H}^{\infty} $ to Zygmund spaces to be bounded and compact.
Citation: A. Kamal, M. Hamza. Eissa. A new product of weighted differentiation and superposition operators between Hardy and Zygmund Spaces[J]. AIMS Mathematics, 2021, 6(7): 7749-7765. doi: 10.3934/math.2021451
Our goal of this article is to introduce a new product operator that will be called $ {D^n_u} S_{\phi} $ the product of weighted differentiation and superposition operators from $ {H}^{\infty} $ to Zygmund spaces. Moreover, we characterize a necessary and sufficient conditions for $ {D^n_u} S_{\phi} $ operators from $ {H}^{\infty} $ to Zygmund spaces to be bounded and compact.
[1] | V. Álvarez, M. A. Márquez, D. Vukotić, Superposition operators between the Bloch space and Bergman spaces, Ark. mat., 42 (2004), 205-216. doi: 10.1007/BF02385476 |
[2] | S. Buckley, J. Fernández, D. Vukotić, Superposition operators on Dirichlet type spaces, Report Uni. Jyvaskyla, 83 (2001), 41-61. |
[3] | B. R. Choe, H. W. Koo, W. Smith, Composition operators on small spaces, Integr. Equ. Oper. Theory, 56 (2006), 357-380. doi: 10.1007/s00020-006-1420-x |
[4] | C. C. Cowen Jr, Composition operators on spaces of analytic functions, Routledge, 2019. |
[5] | P. L. Duren, Theory of $ {H}^p $ spaces, New York: Academic press, 38 (1970), 1-261. |
[6] | A. E. S. Ahmed, A. Kamal, T. I. Yassen, Natural metrics and boundedness of the superposition operator acting between $\mathcal{B}^{*}_{\alpha}$ and $f^{*}{(p, q, s)}$, Electronic J. Math. Anal. Appl., 3 (2015), 195-203. |
[7] | A. K. Mohamed, On generalized superposition operator acting of analytic function spaces, J. Egyp. Math. Soc., 23 (2015), 134-138. doi: 10.1016/j.joems.2014.02.014 |
[8] | A. Kamal, Properties of superposition operators acting between $b^{*}_{\mu}$ and $q^{*}_{K}$, J. Egyp. Math. Soc., 23 (2015), 507-512. doi: 10.1016/j.joems.2015.01.003 |
[9] | S. X. Li, S. Stević, Volterra-type operators on zygmund spaces, J. Inequal. Appl., 2007 (2007), 32124. |
[10] | S. X. Li, S. Stević, Generalized composition operators on Zygmund spaces and Bloch type spaces, J. Math. Anal. Appl., 338 (2008), 1282-1295. doi: 10.1016/j.jmaa.2007.06.013 |
[11] | S. X. Li, S. Stević, Products of Volterra type operator and composition operator from ${H}^\infty$ and Bloch spaces to Zygmund spaces, J. Math. Anal. Appl., 345 (2008), 40-52. doi: 10.1016/j.jmaa.2008.03.063 |
[12] | S. X. Li, S. Stević, Weighted composition operators from Zygmund spaces into Bloch spaces, Appl. Math. Comput., 206 (2008), 825-831. doi: 10.1016/j.amc.2008.10.006 |
[13] | Y. M. Liu, Y. Y. Yu, Composition followed by differentiation between ${H}^{\infty}$ and zygmund spaces, Complex Anal. Oper. Theory, 6 (2012), 121-137. doi: 10.1007/s11785-010-0080-7 |
[14] | K. Madigan, A. Matheson, Compact composition operators on the bloch space, T. Am. Math. Soc., 347 (1995), 2679-2687. doi: 10.1090/S0002-9947-1995-1273508-X |
[15] | C. J. Xiong, Superposition operators between ${Q_{p}}$ spaces and Bloch-type spaces, Complex Var. Elliptic, 50 (2005), 935-938. |
[16] | W. Xu, Superposition operators on Bloch-type spaces, Comput. Methods Funct. Theory, 7 (2007), 501-507. doi: 10.1007/BF03321659 |
[17] | Y. Y. Yu, Y. M. Liu, On stević type operator from ${H}^\infty$ space to the logarithmic bloch spaces, Complex Anal. Oper. Theory, 9 (2015), 1759-1780. doi: 10.1007/s11785-015-0465-8 |
[18] | K. H. Zhu, Spaces of holomorphic functions in the unit ball, Springer Science & Business Media, 26 (2015). |