Research article

Projection-primitive $ P $-Ehresmann semigroups

  • Received: 23 December 2020 Accepted: 23 April 2021 Published: 26 April 2021
  • MSC : 20M10, 20M50

  • $ P $-Ehresmann semigroups introduced by Jones are natural generalizations of Ehresmann semigroups. The aim of this paper is to introduce and describe projection-primitive $ P $-Ehresmann semigroups. More specifically, it is proved that a projection-primitive $ P $-Ehresmann semigroup is either isomorphic to a Rees matrix semigroup over a monoid with some natural conditions or a generalized category with zero adjoined.

    Citation: Shoufeng Wang. Projection-primitive $ P $-Ehresmann semigroups[J]. AIMS Mathematics, 2021, 6(7): 7044-7055. doi: 10.3934/math.2021413

    Related Papers:

  • $ P $-Ehresmann semigroups introduced by Jones are natural generalizations of Ehresmann semigroups. The aim of this paper is to introduce and describe projection-primitive $ P $-Ehresmann semigroups. More specifically, it is proved that a projection-primitive $ P $-Ehresmann semigroup is either isomorphic to a Rees matrix semigroup over a monoid with some natural conditions or a generalized category with zero adjoined.



    加载中


    [1] K. Auinger, Free locally inverse $^\ast$-semigroup, Czech. Math. J., 43 (1993), 523–545. doi: 10.21136/CMJ.1993.128418
    [2] J. B. Fountain, Abundant semigroups, Proc. Lond. Math. Soc., s3-44 (1982), 103–129. doi: 10.1112/plms/s3-44.1.103
    [3] V. Gould, Restriction and Ehresmann semigroups, In: Proceedings of the International Conference on Algebra 2010, Advances in Algebraic Structures, World Sci. Publ., Hackensack, (2012), 265–288.
    [4] V. Gould, Notes on restriction semigroups and related structures, 2010. Available from: www-users.york.ac.uk/ varg1/restriction.pdf.
    [5] J. M. Howie, An introduction to semigroup theory, London: Academic Press, 1976.
    [6] C. Hollings, From right PP monoids to restriction semigroups: A survey, Eur. J. Pure Appl. Math., 2 (2009), 21–57.
    [7] P. R. Jones, A common framework for restriction semigroups and regular $^\ast$-semigroups, J. Pure Appl. Algebra, 216 (2012), 618–632. doi: 10.1016/j.jpaa.2011.07.014
    [8] P. R. Jones, The semigroups $B_2$ and $B_0$ are inherently nonfinitely based, as restriction semigroups, Int. J. Algebra Comput., 23 (2013), 1289–1335. doi: 10.1142/S0218196713500264
    [9] P. R. Jones, Varieties of $P$-restriction semigroups, Commun. Algebra, 42 (2014), 1811–1834. doi: 10.1080/00927872.2012.749883
    [10] P. R. Jones, Varieties of restriction semigroups and varieties of categories, Commun. Algebra, 45 (2017), 1037–1056. doi: 10.1080/00927872.2016.1175457
    [11] G. Kudryavtseva, Partial monoid actions and a class of restriction semigroups, J. Algebra, 429 (2015), 342–370. doi: 10.1016/j.jalgebra.2015.01.017
    [12] M. V. Lawson, Inverse semigroups, Singapore: World Scientific, 1998.
    [13] M. V. Lawson, Semigroups and ordered categories. I. The reduced case, J. Algebra, 141 (1991), 422–462. doi: 10.1016/0021-8693(91)90242-Z
    [14] M. V. Lawson, Rees matrix semigroups, Proc. Edinburgh Math. Soc., 33 (1990), 23–37. doi: 10.1017/S0013091500028856
    [15] T. E. Nordahl, H. E. Scheiblich, Regular $^\ast$-semigroups, Semigroup Forum, 16 (1978), 369–377. doi: 10.1007/BF02194636
    [16] G. B. Preston, Inverse semigroups with minimal right ideals, J. London Math. Soc., 29 (1954), 404–411.
    [17] G. B. Preston, Matrix representations of inverse semigroups, J. Aust. Math. Soc., 9 (1969), 29–61. doi: 10.1017/S1446788700005656
    [18] M. Petrich, Inverse semigroups, New York: John Wiley & Sons, Inc., 1984.
    [19] M. Petrich, Certain varieties of completely regular $^\ast$-semigroups, Boll. Un. Mat. Ital. (B), 4 (1985), 343–370.
    [20] M. B. Szendrei, Embedding into almost left factorizable restriction semigroups, Commun. Algebra, 41 (2013), 1458–1483. doi: 10.1080/00927872.2011.643839
    [21] P. S. Venkatesan, Primitive orthodox semigroups, Semigroup Forum, 17 (1979), 365–372. doi: 10.1007/BF02194335
    [22] Y. H. Wang, Primitive weakly $B$-orthodox semigroups, Southeast Asian Bull. Math., 36 (2012), 903–916.
    [23] S. F. Wang, Fundamental regular semigroups with quasi-ideal regular $^\ast$-transversals, Bull. Malays. Math. Sci. Soc., 38 (2015), 1067–1083. doi: 10.1007/s40840-014-0070-4
    [24] S. F. Wang, On algebras of $P$-Ehresmann semigroups and their associate partial semigroups, Semigroup Forum, 95 (2017), 569–588. doi: 10.1007/s00233-017-9903-4
    [25] S. F. Wang, An Ehresmann-Schein-Nambooripad-type theorem for a class of $P$-restriction semigroups, Bull. Malays. Math. Sci. Soc., 42 (2019), 535–568. doi: 10.1007/s40840-017-0497-5
    [26] S. F. Wang, An Ehresmann-Schein-Nambooripad theorem for locally Ehresmann $P$-Ehresmann semigroups, Period. Math. Hung., 80 (2020), 108–137. doi: 10.1007/s10998-019-00309-x
    [27] P. Yan, S. F. Wang, Completions of generalized restriction $P$-restriction semigroups, Bull. Malays. Math. Sci. Soc., 43 (2020), 3651–3673. doi: 10.1007/s40840-020-00888-w
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1971) PDF downloads(99) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog