Research article

A generalized conic domain and its applications to certain subclasses of multivalent functions associated with the basic (or $ q $-) calculus

  • Received: 13 November 2020 Accepted: 08 April 2021 Published: 16 April 2021
  • MSC : 11M35, 30C45, 30C50

  • Citation: H. M. Srivastava, T. M. Seoudy, M. K. Aouf. A generalized conic domain and its applications to certain subclasses of multivalent functions associated with the basic (or $ q $-) calculus[J]. AIMS Mathematics, 2021, 6(6): 6580-6602. doi: 10.3934/math.2021388

    Related Papers:



  • 加载中


    [1] M. H. Annaby, Z. S. Mansour, $q$-Fractional calculus and equations, Springer-Verlag, Berlin, Heidelberg, 2012.
    [2] M. K. Aouf, A generalization of multivalent functions with negative coefficients, J. Korean Math. Soc., 25 (1988), 53–66.
    [3] M. K. Aouf, On a class of $p$-valent starlike functions of order $\alpha$, Internat. J. Math. Math. Sci., 10 (1987), 733–744. doi: 10.1155/S0161171287000838
    [4] M. K. Aouf, H. E. Darwish, G. S. Sălăgean, On a generalization of starlike functions with negative coefficients, Mathematica $($Cluj$)$, 43 (2001), 3–10.
    [5] M. K. Aouf, H. M. Hossen, H. M. Srivastava, Some families of multivalent functions, Comput. Math. Appl., 39 (2000), 39–48.
    [6] M. K. Aouf, T. M. Seoudy, Convolution properties for classes of bounded analytic functions with complex order defined by $q$-derivative operator, Rev. Real Acad. Cienc. Exactas Fís. Natur. Ser. A Mat. $($RACSAM$)$, 113 (2019), 1279–1288.
    [7] M. K. Aouf, T. M. Seoudy, Fekete-Szegö problem for certain subclass of analytic functions with complex order defined by $q$-analogue of Ruscheweyh operator, Constr. Math. Anal., 3 (2020), 36–44.
    [8] T. Bulboacă, Differential subordinations and superordinations: Recent results, House of Scientific Book Publishers, Cluj-Napoca, 2005.
    [9] P. L. Duren, Univalent functions, Grundlehren der mathematischen wissenschaften, Springer-Verlag, New York, 1983.
    [10] G. Gasper, M. Rahman, Basic hypergeometric series, Second edition, Encyclopedia of Mathematics and Its Applications, Cambridge University Press, Cambridge, London and New York, 2004.
    [11] S. Hussain, S. Khan, M. A. Zaighum, M. Darus, Certain subclass of analytic functions related with conic domains and associated with $q$-differential operator, AIMS Mathematics, 2 (2017), 622–634. doi: 10.3934/Math.2017.4.622
    [12] M. E. H. Ismail, E. Merkes, D. Styer, A generalization of starlike functions, Complex Variables Theory Appl., 14 (1990), 77–84. doi: 10.1080/17476939008814407
    [13] F. H. Jackson, On $q$-definite integrals, Quart. J. Pure Appl. Math., 41 (1910), 193–203.
    [14] F. H. Jackson, $q$-Difference equations, Am. J. Math., 32 (1910), 305–314.
    [15] V. G. Kac, P. Cheung, Quantum calculus, Springer-Verlag, Berlin, Heidelberg, New York, 2002.
    [16] S. Kanas, Coefficient estimates in subclasses of the Carathéodory class related to conical domains, Acta Math. Univ. Comenian., 75 (2005), 149–161.
    [17] S. Kanas, H. M. Srivastava, Linear operators associated with $k$-uniformly convex functions, Integral Transforms Spec. Funct., 9 (2000), 121–132. doi: 10.1080/10652460008819249
    [18] S. Kanas, A. Wiśniowska, Conic regions and $k$-uniform convexity, J. Comput. Appl. Math., 105 (1999), 327–336. doi: 10.1016/S0377-0427(99)00018-7
    [19] S. Kanas, A. Wiśniowska, Conic domains and starlike functions, Rev. Roumaine Math. Pures Appl., 45 (2000), 647–658.
    [20] B. Khan, Z. G. Liu, H. M. Srivastava, N. Khan, M. Darus, M. Tahir, A study of some families of multivalent $q$-starlike functions involving higher-order $q$-derivatives, Mathematics, 8 (2020), 1–12.
    [21] B. Khan, Z. G. Liu, H. M. Srivastava, N. Khan, M. Tahir, Applications of higher-order derivatives to subclasses of multivalent $q$-starlike functions, Maejo Internat. J. Sci. Technol., 15 (2021)), 61–72.
    [22] B. Khan, H. M. Srivastava, N. Khan, M. Darus, Q. Z. Ahmad, M. Tahir, Applications of certain conic domains to a subclass of $q$-starlike functions associated with the Janowski functions, Symmetry, 13 (2021), 1–18.
    [23] B. Khan, H. M. Srivastava, M.Tahir, M. Darus, Q. Z. Ahmad, N. Khan, Applications of a certain $q$-integral operator to the subclasses of analytic and bi-univalent functions, AIMS Mathematicis, 6 (2021), 1110–1125. doi: 10.3934/math.2021067
    [24] Q. Khan, M. Arif, M. Raza, G. Srivastava, H. Tang, S. U. Rehman, et al. Some applications of a new integral operator in $q$-analog for multivalent functions, Mathematics, 7 (2019), 1–13.
    [25] B. Kowalczyk, A. Lecko, H. M. Srivastava, A note on the Fekete-Szegö problem for close-to-convex functions with respect to convex functions, Publ. Inst. Math. $($Beograd$)$ $($Nouvelle Sér.$)$, 101 (2017), 143–149.
    [26] W. Ma, D. Minda, A unified treatment of some special classes of univalent functions, In: Proceedings of the Conference on Complex Analysis (Tianjin, 19–23 June 1992) (Z. Li, F.-Y. Ren, L. Yang, S.-Y. Zhang, Editors), Conference Proceedings and Lecture Notes in Analysis, Vol. I, International Press, Cambridge, Massachusetts, 1994,157–169.
    [27] S. Mahmood, M. Jabeen, S. N. Malik, H. M. Srivastava, R. Manzoor, S. M. J. Riaz, Some coefficient inequalities of $q$-starlike functions associated with conic domain defined by $q$-derivative, J. Funct. Space., 2018 (2018), 1–13.
    [28] S. Mahmood, N. Raza, E. S. A. Abujarad, G. Srivastava, H. M. Srivastava, S. N. Malik, Geometric properties of certain classes of analytic functions associated with a $q$-integral operator, Symmetry, 11 (2019), 1–14.
    [29] M. S. Marouf, A subclass of multivalent uniformly convex functions associated with Dziok-Srivastava linear operator, Int.. J. Math. Analysis, 3 (2009), 1087–1100.
    [30] S. S. Miller, P. T. Mocanu, Differential subordination: Theory and applications, CRC Press, 2000.
    [31] K. I. Noor, M. Arif, W. Ul-Haq, On $k$-uniformly close-to-convex functions of complex order, Appl. Math. Comput., 215 (2009), 629–635.
    [32] S. Owa, On certain classes of $p$-valent functions with negative coefficients, Simon Stevin, 59 (1985), 385–402.
    [33] P. M. Rajković, S. D. Marinković, M. S. Stanković, Fractional integrals and derivatives in $q$-calculus, Appl. Anal. Discr. Math., 1 (2007), 311–323. doi: 10.2298/AADM0701072C
    [34] C. Ramachandran, T. Soupramanien, B. A. Frasin, New subclasses of analytic functions associated with $q$-difference operator, Eur. J. Pure Appl. Math., 10 (2017), 348–362.
    [35] M. Raza, H. M. Srivastava, M. Arif, K. Ahmad, Coefficient estimates for a certain family of analytic functions involving a $q$-derivative operator, Ramanujan J., 54 (2021), 501–519.
    [36] M. S. U. Rehman, Q. Z. Ahmad, H. M. Srivastava, N. Khan, M. Darus, M. Tahir, Coefficient inequalities for certain subclasses of multivalent functions associated with conic domain, J. Inequal. Appl., 2020 (2020), 1–17. doi: 10.1186/s13660-019-2265-6
    [37] M. S. U. Rehman, Q. Z. Ahmad, H. M. Srivastava, N. Khan, M. Darus, B. Khan, Applications of higher-order $q$-derivatives to the subclass of $q$-starlike functions associated with the Janowski functions, AIMS Mathematics, 6 (2021), 1110–1125. doi: 10.3934/math.2021067
    [38] T. M. Seoudy, M. K. Aouf, Convolution properties for certain classes of analytic functions defined by $q$-derivative operator, Abstr. Appl. Anal., 2014 (2014), 1–7.
    [39] T. M. Seoudy, M. K. Aouf, Coefficient estimates of new classes of $q$-starlike and $q$-convex functions of complex order, J. Math. Inequal., 10 (2016), 135–145.
    [40] L. Shi, Q. Khan, G. Srivastava, J. L. Liu, M. Arif, A study of multivalent $q$-starlike functions connected with circular domain, Mathematics, 7 (2019), 1–12.
    [41] H. M. Srivastava, Univalent functions, fractional calculus, and associated generalized hypergeometric functions, In: Univalent Functions$, $ Fractional Calculus$, $ and Their Applications (H. M. Srivastava and S. Owa, Editors), Halsted Press (Ellis Horwood Limited, Chichester), John Wiley and Sons, New York, Chichester, Brisbane and Toronto, 1989,329–354.
    [42] H. M. Srivastava, Operators of basic (or $q$-) calculus and fractional $q$-calculus and their applications in geometric function theory of complex analysis, Iran. J. Sci. Technol. Trans. A$:$ Sci., 44 (2020), 327–344. doi: 10.1007/s40995-019-00815-0
    [43] H. M. Srivastava, Q. Z. Ahmad, N. Khan, N. Khan, B. Khan, Hankel and Toeplitz determinants for a subclass of $q$-starlike functions associated with a general conic domain, Mathematics, 7 (2019), 1–15.
    [44] H. M. Srivastava, M. Arif, M. Raza, Convolution properties of meromorphically harmonic functions defined by a generalized convolution $q$-derivative operator, AIMS Mathematics, 6 (2021), 5869–5885. doi: 10.3934/math.2021347
    [45] H. M. Srivastava, J. Choi, Zeta and $q$-Zeta Functions and Associated Series and Integrals, Elsevier, 2012.
    [46] H. M. Srivastava, S. M. El-Deeb, The Faber polynomial expansion method and the Taylor-Maclaurin coefficient estimates of bi-close-to-convex functions connected with the $q$-convolution, AIMS Mathematics, 5 (2020), 7087–7106. doi: 10.3934/math.2020454
    [47] H. M. Srivastava, S. Hussain, A. Raziq, M. Raza, The Fekete-Szegö functional for a subclass of analytic functions associated with quasi-subordination, Carpathian J. Math., 34 (2018), 103–113. doi: 10.37193/CJM.2018.01.11
    [48] H. M. Srivastava, P. W. Karlsson, Multiple gaussian hypergeometric series, John Wiley and Sons, New York, Chichester, Brisbane, Toronto, 1985.
    [49] H. M. Srivastava, G. Kaur, G. Singh, Estimates of the fourth Hankel determinant for a class of analytic functions with bounded turnings involving cardioid domains, J. Nonlinear Convex Anal., 22 (2021), 511–526.
    [50] H. M. Srivastava, B. Khan, N. Khan, Q. Z. Ahmad, M. Tahir, Generalized conic domain and its applications to certain subclasses of analytic functions, Rocky Mountain J. Math., 49 (2019), 2325–2346.
    [51] H. M. Srivastava, N. Khan, M. Darus, S. Khan, Q. Z. Ahmad, S. Hussain, Fekete-Szegö type problems and their applications for a subclass of $q$-starlike functions with respect to symmetrical points, Mathematics, 8 (2020), 1–18.
    [52] H. M. Srivastava, B. Khan, Nazar Khan, M. Tahir, S. Ahmad, Nasir Khan, Upper bound of the third Hankel determinant for a subclass of $q$-starlike functions associated with the $q$-exponential function, Bull. Sci. Math., 167 (2021), 1–16.
    [53] H. M. Srivastava, A. K. Mishra, M. K. Das, The Fekete-Szegö problem for a subclass of close-to-convex functions, Complex Variables Theory Appl., 44 (2001), 145–163. doi: 10.1080/17476930108815351
    [54] H. M. Srivastava, A. O. Mostafa, M. K. Aouf, H. M. Zayed, Basic and fractional $q$-calculus and associated Fekete-Szegö problem for $p$-valently $q$-starlike functions and $p$-valently $q$-convex functions of complex order, Miskolc Math. Notes, 20 (2019), 489–509. doi: 10.18514/MMN.2019.2405
    [55] H. M. Srivastava, G. Murugusundaramoorthy, S. M. El-Deeb, Faber polynomial coefficient estmates of bi-close-to-convex functions connected with the Borel distribution of the Mittag-Leffler type, J. Nonlinear Var. Anal., 5 (2021), 103–118. doi: 10.23952/jnva.5.2021.1.07
    [56] H. M. Srivastava, N. Raza, E. S. A. AbuJarad, G. Srivastava, M. H. AbuJarad, Fekete-Szegö inequality for classes of $(p, q)$-starlike and $(p, q)$-convex functions, Rev. Real Acad. Cienc. Exactas Fís. Natur. Ser. A Mat. $($RACSAM$)$, 113 (2019), 3563–3584.
    [57] H. Tang, Q. Khan, M. Arif, M. Raza, G. Srivastava, S. U. Rehman, et al. Some applications of a new integral operator in $q$-analog for multivalent functions, Mathematics, 7 (2019), 1–13.
    [58] H. E. Ö. Uçar, Coefficient inequality for $q$-starlike functions, Appl. Math. Comput., 276 (2016), 122–126.
    [59] H. M. Zayed, M. K. Aouf, Subclasses of analytic functions of complex order associated with $q$-Mittag-Leffler function, J. Egyptian Math. Soc., 26 (2018), 278–286. doi: 10.21608/joems.2018.2640.1015
    [60] X. L. Zhang, S. Khan, S. Hussain, H. Tang, Z. Shareef, New subclass of $q$-starlike functions associated with generalized conic domain, AIMS Mathematics, 5 (2020), 4830–4848. doi: 10.3934/math.2020308
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1877) PDF downloads(76) Cited by(7)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog