Research article

Caputo-Fabrizio fractional differential equations with instantaneous impulses

  • Received: 22 November 2020 Accepted: 05 January 2021 Published: 08 January 2021
  • MSC : 26A33, 34A37, 34G20

  • The subjuct of this paper is the existence of solutions for a class of Caputo-Fabrizio fractional differential equations with instantaneous impulses. Our results are based on Schauder's and Monch's fixed point theorems and the technique of the measure of noncompactness. Two illustrative examples are the subject of the last section.

    Citation: Saïd Abbas, Mouffak Benchohra, Juan J. Nieto. Caputo-Fabrizio fractional differential equations with instantaneous impulses[J]. AIMS Mathematics, 2021, 6(3): 2932-2946. doi: 10.3934/math.2021177

    Related Papers:

  • The subjuct of this paper is the existence of solutions for a class of Caputo-Fabrizio fractional differential equations with instantaneous impulses. Our results are based on Schauder's and Monch's fixed point theorems and the technique of the measure of noncompactness. Two illustrative examples are the subject of the last section.



    加载中


    [1] S. Abbas, M. Benchohra, J. R. Graef, J. Henderson, Implicit fractional differential and integral equations: Existence and stability, De Gruyter, Berlin, 2018.
    [2] S. Abbas, M. Benchohra, J. Graef, J. E. Lazreg, Implicit Hadamard fractional differential equations with impulses under weak topologies, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 26 (2019), 89–112.
    [3] S. Abbas, M. Benchohra, G. M. N'Guérékata, Topics in fractional differential equations, Springer, New York, 2012.
    [4] S. Abbas, M. Benchohra, G. M. N'Guérékata, Advanced fractional differential and integral equations, Nova Science Publishers, New York, 2015.
    [5] B. Acay, R. Ozarslan, E. Bas, Fractional physical models based on falling body problem, AIMS Math., 5 (2020), 2608–2628. doi: 10.3934/math.2020170
    [6] R. P. Agarwal, S. Hristova, D. O'Regan, Exact solutions of linear Riemann-Liouville fractional differential equations with impulses, Rocky Mt. J. Math., 50 (2020), 779–791.
    [7] W. Albarakati, M. Benchohra, J. E. Lazreg, J. J. Nieto, Anti-periodic boundary value problem for nonlinear implicit fractional differential equations with impulses, An. Univ. Oradea Fasc. Mat., 25 (2018), 13–24.
    [8] J. C. Alvàrez, Measure of noncompactness and fixed points of nonexpansive condensing mappings in locally convex spaces, Rev. Real. Acad. Cienc. Exact. Fis. Natur. Madrid, 79 (1985), 53–66.
    [9] J. M. A. Toledano, T. D. Benavides, G. L. Acedo, Measures of noncompactness in metric fixed point theory, In: Operator theory, advances and applications, Birkhäuser, Basel, Boston, Berlin, 1997.
    [10] J. Bana$\mathop {\rm{s}}\limits^{\rm{'}}$, K. Goebel, Measures of noncompactness in Banach spaces, Marcel Dekker, New York, 1980.
    [11] M. Bekkouche, M. Guebbai, H. Kurulay, M. Benmahmoud, A new fractional integral associated with the Caputo-Fabrizio fractional derivative, Rend. Circ. Mat. Palermo, Series II, 2020. Available from: https://doi.org/10.1007/s12215-020-00557-8.
    [12] M. Benchohra, J. Henderson, S. K. Ntouyas, Impulsive differential equations and inclusions, Hindawi Publishing Corporation, New York, 2006.
    [13] M. Benchohra, J. Henderson, D. Seba, Measure of noncompactness and fractional differential equations in Banach spaces, Commun. Appl. Anal., 12 (2008), 419–428.
    [14] M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Prog. Frac. Differ. Appl., 1 (2015), 73–85.
    [15] M. A. Dokuyucu, A fractional order alcoholism model via Caputo-Fabrizio derivative, AIMS Math., 5 (2020), 781–797. doi: 10.3934/math.2020053
    [16] J. R. Graef, J. Henderson, A. Ouahab, Impulsive differential inclusions: A fixed point approch, De Gruyter, Berlin/Boston, 2013.
    [17] E. Hernández, K. A. G. Azevedo, M. C. Gadotti, Existence and uniqueness of solution for abstract differential equations with state-dependent delayed impulses, J. Fixed Point Theory Appl., 21 (2019), 1–17. doi: 10.1007/s11784-018-0638-y
    [18] E. Hernández, D. O'Regan, On a new class of abstract impulsive differential equations, Proc. Am. Math. Soc., 141 (2013), 1641–1649.
    [19] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier Science B.V., Amsterdam, 2006.
    [20] F. Kong, J. J. Nieto, Control of bounded solutions for first-order singular differential equations with impulses, IMA J. Math. Control Inf., 37 (2020), 877–893. doi: 10.1093/imamci/dnz033
    [21] Y. Liu, E. Fan, B. Yin, H. Li, Fast algorithm based on the novel approximation formula for the Caputo-Fabrizio fractional derivative, AIMS Math., 5 (2020), 1729–1744. doi: 10.3934/math.2020117
    [22] J. Losada, J. J. Nieto, Properties of a new fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), 87–92.
    [23] H. Mönch, Boundary value problems for nonlinear ordinary differential equations of second order in Banach spaces, Nonlinear Anal., 4 (1980), 985–999. doi: 10.1016/0362-546X(80)90010-3
    [24] J. J. Nieto, J. M. Uzal, Positive periodic solutions for a first order singular ordinary differential equation generated by impulses, Qual. Theory Dyn. Syst., 17 (2018), 637–650. doi: 10.1007/s12346-017-0266-8
    [25] S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional integrals and derivatives: Theory and applications, (Engl. Trans. from the Russian), Gordon and Breach, Amsterdam, 1987.
    [26] I. Stamova, G. Stamov, Functional and impulsive differential equations of fractional order: Qualitative analysis and applications, CRC Press, 2017.
    [27] V. E. Tarasov, Fractional dynamics: Application of fractional calculus to dynamics of particles, fields and media, Springer, Heidelberg; Higher Education Press, Beijing, 2011.
    [28] Z. You, J. Wang, D. O'Regan, Y. Zhou, Relative controllability of delay differential systems with impulses and linear parts defined by permutable matrices, Math. Methods Appl. Sci., 42 (2019), 954–968. doi: 10.1002/mma.5400
    [29] Y. Zhou, J. R. Wang, L. Zhang, Basic theory of fractional differential equations, 2Eds., World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2017.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2250) PDF downloads(145) Cited by(18)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog