Research article

Neuro-swarms intelligent computing using Gudermannian kernel for solving a class of second order Lane-Emden singular nonlinear model

  • Received: 27 September 2020 Accepted: 09 December 2020 Published: 21 December 2020
  • MSC : 68T20, 65Lxx, 68U99

  • The present work is to design a novel Neuro swarm computing standards using artificial intelligence scheme to exploit the Gudermannian neural networks (GNN)accomplished with global and local search ability of particle swarm optimization (PSO) and sequential quadratic programming scheme (SQPS), called as GNN-PSO-SQPS to solve a class of the second order Lane-Emden singular nonlinear model (SO-LES-NM). The suggested intelligent computing solver GNN-PSO-SQPS using the Gudermannian kernel are unified with the configuration of the hidden layers of GNN of differential operators for solving the SO-LES-NM. An error based fitness function (FF) applying the differential form of the differential model and corresponding boundary conditions. The FF is optimized together with the combined heuristics of PSO-SQPS. Three problems of the SO-LES-NM are solved to validate the correctness, effectiveness and competence of the designed GNN-PSO-SQPS. The performance of the GNN-PSO-SQPS through statistical operators is tested to check the constancy, convergence and precision.

    Citation: Zulqurnain Sabir, Muhammad Asif Zahoor Raja, Adnène Arbi, Gilder Cieza Altamirano, Jinde Cao. Neuro-swarms intelligent computing using Gudermannian kernel for solving a class of second order Lane-Emden singular nonlinear model[J]. AIMS Mathematics, 2021, 6(3): 2468-2485. doi: 10.3934/math.2021150

    Related Papers:

  • The present work is to design a novel Neuro swarm computing standards using artificial intelligence scheme to exploit the Gudermannian neural networks (GNN)accomplished with global and local search ability of particle swarm optimization (PSO) and sequential quadratic programming scheme (SQPS), called as GNN-PSO-SQPS to solve a class of the second order Lane-Emden singular nonlinear model (SO-LES-NM). The suggested intelligent computing solver GNN-PSO-SQPS using the Gudermannian kernel are unified with the configuration of the hidden layers of GNN of differential operators for solving the SO-LES-NM. An error based fitness function (FF) applying the differential form of the differential model and corresponding boundary conditions. The FF is optimized together with the combined heuristics of PSO-SQPS. Three problems of the SO-LES-NM are solved to validate the correctness, effectiveness and competence of the designed GNN-PSO-SQPS. The performance of the GNN-PSO-SQPS through statistical operators is tested to check the constancy, convergence and precision.



    加载中


    [1] H. J. Lane, On the theoretical temperature of the Sun, under the Hypothesis of a gaseous Mass maintaining its Volume by its internal Heat and depending on the laws of gases as known to terrestrial Experiment, Am. J. Sci., 148 (1870), 57-74.
    [2] R. Emden, Gaskugeln Teubner. Leipzig und Berlin, 1907.
    [3] Z. Sabir, H. A. Wahab, H. Umr, M. G. Sakar, M. A. Z. Raja, Novel design of Morlet wavelet neural network for solving second order Lane-Emden equation, Math. Comput. Simul., 172 (2020), 1-14. doi: 10.1016/j.matcom.2020.01.005
    [4] D. Baleanu, S. S. Sajjadi, A, Jajarmi, J. H. Asad, New features of the fractional Euler-Lagrange equations for a physical system within non-singular derivative operator. Eur. Phys. J. Plus, 134 (2019), 181. doi: 10.1140/epjp/i2019-12561-x
    [5] T. Luo, Z. Xin, H. Zeng, Nonlinear asymptotic stability of the Lane-Emden solutions for the viscous gaseous star problem with degenerate density dependent viscosities, Comm. Math. Phys, 347 (2016), 657-702. doi: 10.1007/s00220-016-2753-1
    [6] J. A. Khan, M. A. Z. Raja, M. M. Rashidi, M. I. Syam, A. M. Wazwaz, Nature-inspired computing approach for solving non-linear singular Emden-Fowler problem arising in electromagnetic theory, Connect. Sci., 27 (2015), 377-396. doi: 10.1080/09540091.2015.1092499
    [7] M. Ghergu, V. Rădulescu, On a class of singular Gierer-Meinhardt systems arising in morphogenesis, C. R. Math., 344 (2007), 163-168. doi: 10.1016/j.crma.2006.12.008
    [8] R Rach, J. S. Duan, A. M. Wazwaz, Solving coupled Lane-Emden boundary value problems in catalytic diffusion reactions by the Adomian decomposition method, J. Math. Chem., 52 (2014), 255-267. doi: 10.1007/s10910-013-0260-6
    [9] A. H. Bhrawy, A. S. Alofi, R. A. Van Gorder, An efficient collocation method for a class of boundary value problems arising in mathematical physics and geometry, Abst. Appl. Anal., 2014 (2014).
    [10] M. Dehghan, F. Shakeri, Solution of an integro-differential equation arising in oscillating magnetic fields using He's homotopy perturbation method, Prog. Electromagn. Res., 78 (2008), 361-376. doi: 10.2528/PIER07090403
    [11] D. Flockerzi, K. Sundmacher, On coupled Lane-Emden equations arising in dusty fluid models, J. Phys.: Conference Series, 268 (2011), 012006. doi: 10.1088/1742-6596/268/1/012006
    [12] V. Rădulescu, D. Repovš, Combined effects in nonlinear problems arising in the study of anisotropic continuous media, Nonlinear Anal. Theor. Methods Appl., 75 (2012), 1524-1530. doi: 10.1016/j.na.2011.01.037
    [13] W. Adel, Z. Sabir, Solving a new design of nonlinear second-order Lane-Emden pantograph delay differential model via Bernoulli collocation method, Eur. Phys. J. Plus, 135 (2020), 427. doi: 10.1140/epjp/s13360-020-00449-x
    [14] S. Mall, S. Chakraverty, Numerical solution of nonlinear singular initial value problems of Emden-Fowler type using Chebyshev Neural Network method, Neurocomputing, 149 (2015), 975-982. doi: 10.1016/j.neucom.2014.07.036
    [15] S. Mall, S. Chakraverty, Chebyshev neural network based model for solving Lane-Emden type equations, Appl. Math. Comput., 247 (2014), 100-114.
    [16] S. Mall, S. Chakraverty, Regression-based neural network training for the solution of ordinary differential equations, Int. J. Math. Modell. Numer. Optim., 4 (2013), 136-149.
    [17] Z. Sabir, M. Umar, J. L. G. Guirao, M. Shoaib, M. A. Z. Raja, Integrated intelligent computing paradigm for nonlinear multi-singular third-order Emden-Fowler equation, Neural Comput. Appl., (2020). Available from: https://doi.org/10.1007/s00521-020-05187-w.
    [18] I Ahmad, H. Ilyas, A. Urooj, M. S. Aslam, M. Shoaib, M. A. Z. Raja, Novel applications of intelligent computing paradigms for the analysis of nonlinear reactive transport model of the fluid in soft tissues and microvessels, Neural Comput. Appl., 31 (2019), 9041-9059. doi: 10.1007/s00521-019-04203-y
    [19] Z. Sabir, F. Amin, D. Pohl, J. L. G. Guirao, Intelligence computing approach for solving second order system of Emden-Fowler model, J. Intell. Fuzzy Syst., In press.
    [20] Z. Sabir, S. Saoud, M. A. Z. Raja, H. A. Wahab, A. Arbi, Heuristic computing technique for numerical solutions of nonlinear fourth order Emden-Fowler equation, Math. Comput. Simul., 178 (2020), 534-548. doi: 10.1016/j.matcom.2020.06.021
    [21] M. A. Z. Raja, J. Mehmood, Z. Sabir, A. K. Nasab, M. A. Manzar, Numerical solution of doubly singular nonlinear systems using neural networks-based integrated intelligent computing. Neural Comput. Appl., 31 (2019), 793-812.
    [22] S. U. I. Ahmed, F. Faisal, M. Shoaib, M. A. Z. Raja, A new heuristic computational solver for nonlinear singular Thomas-Fermi system using evolutionary optimized cubic splines, European Phys. J. Plus, 135 (2020), 1-29. doi: 10.1140/epjp/s13360-019-00059-2
    [23] Z. Sabir, M. A. Z. Raja, M. Umar, M. Shoaib, Design of neuro-swarming-based heuristics to solve the third-order nonlinear multi-singular Emden-Fowler equation, Eur. Phys. J. Plus, 135 (2020), 1-17. doi: 10.1140/epjp/s13360-019-00059-2
    [24] M. Umar, M. A. Z. Raja, Z. Sabir, A. S. Alwabli, M. Shoaib, A stochastic computational intelligent solver for numerical treatment of mosquito dispersal model in a heterogeneous environment, Eur. Phys. J. Plus, 135 (2020), 1-23. doi: 10.1140/epjp/s13360-019-00059-2
    [25] A. H. Bukhari, M. Sulaiman, M. A. Z. Raja, S. Islam, M. Shoaib, P. Kumam, Design of a hybrid NAR-RBFs neural network for nonlinear dusty plasma system, Alex. Eng. J., 59 (2020), 3325-3345. doi: 10.1016/j.aej.2020.04.051
    [26] Z. Sabir, M. A. Z. Raja, M. Umar, M. Shoaib, Neuro-swarm intelligent computing to solve the second-order singular functional differential model, Eur. Phys. J. Plus, 135 (2020), 474. doi: 10.1140/epjp/s13360-020-00440-6
    [27] Z Sabir, H. A. Wahab, M. Umar, F. Erdoğan, Stochastic numerical approach for solving second order nonlinear singular functional differential equation, Appl. Math. Comput., 363 (2019), 124605.
    [28] M. A. Z. Raja, F. H. Shah, M. Tariq, I. Ahmad, Design of artificial neural network models optimized with sequential quadratic programming to study the dynamics of nonlinear Troesch's problem arising in plasma physics, Neural Comput. Appl., 29 (2018), 83-109. doi: 10.1007/s00521-016-2530-2
    [29] Z. Sabir, M. A. Manzar, M. A. Z. Raja, M. Sheraz, A. M. Wazwaz, Neuro-heuristics for nonlinear singular Thomas-Fermi systems, Appl. Soft Comput., 65 (2018), 152-169. doi: 10.1016/j.asoc.2018.01.009
    [30] M. Umar, Z. Sabir, F. Amin, J. L. G. Guirao, M. A. Z. Raja, Stochastic numerical technique for solving HIV infection model of CD4+ T cells, Eur. Phys. J. Plus, 135 (2020), 403. doi: 10.1140/epjp/s13360-020-00417-5
    [31] M. Umar, Z. Sabir, M. A. Z. Raja, Intelligent computing for numerical treatment of nonlinear prey-predator models, Appl. Soft Comput., 80 (2019), 506-524. doi: 10.1016/j.asoc.2019.04.022
    [32] Z. Sabir, M. A. Z. Raja, J. L. G. Guirao, M. Shoaib, A neuro-swarming intelligence based computing for second order singular periodic nonlinear boundary value problems, (2020), Pre-print.
    [33] M. A. Z. Raja, U. Farooq, N. I. Chaudhary, A. M. Wazwaz, Stochastic numerical solver for nanofluidic problems containing multi-walled carbon nanotubes, Appl. Soft Comput., 38 (2016), 561-586. doi: 10.1016/j.asoc.2015.10.015
    [34] A. Mehmood, A. Zameer, S. H. Ling, M. A. Z. Raja, Design of neuro-computing paradigms for nonlinear nanofluidic systems of MHD Jeffery-Hamel flow, J. Taiwan Institute Chem. Eng., 91 (2018), 57-85. doi: 10.1016/j.jtice.2018.05.046
    [35] M. Umar, F. Amin, H. A. Wahab, D. Baleanu, Unsupervised constrained neural network modeling of boundary value corneal model for eye surgery, Appl. Soft Comput., 85 (2019), 105826. doi: 10.1016/j.asoc.2019.105826
    [36] Z. Sabir, M. A. Z. Raja, M. Shoaib, J. F. G. Aguilar, FMNEICS: Fractional Meyer neuro-evolution-based intelligent computing solver for doubly singular multi-fractional order Lane-Emden system, Comput. Appl. Math., 39 (2020), 1-18. doi: 10.1007/s40314-019-0964-8
    [37] M. A. Z. Raja, A. Zameer, A. U. Khan, A. M. Wazwaz, A new numerical approach to solve Thomas-Fermi model of an atom using bio-inspired heuristics integrated with sequential quadratic programming, Springer Plus, 5 (2016), 1400. doi: 10.1186/s40064-016-3093-5
    [38] Y. Shi, R. C. Eberhart, Empirical study of particle swarm optimization, Proceedings of the 1999 congress on evolutionary computation-CEC99 (Cat. No. 99TH8406), 3, 1945-1950. IEEE, 1999.
    [39] Y. Shi, Particle swarm optimization: Developments, applications and resources, In: Proceedings of the 2001 congress on evolutionary computation (IEEE Cat. No. 01TH8546), 1, 81-86. IEEE, 2001.
    [40] A. P., Engelbrecht, Computational intelligence: an introduction. John Wiley & Sons, 2007.
    [41] S. Kefi, N. Rokbani, P. Krö mer, A. M. Alimi, Ant supervised by PSO and 2-opt algorithm, AS-PSO-2Opt, applied to traveling salesman problem. In: 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC) (004866-004871), 2016, IEEE.
    [42] A. Taieb, A. Ferdjouni, A new design of fuzzy logic controller optimized by PSO-SCSO applied to SFO-DTC induction motor drive, Int. J. Elect. Comput. Eng., 10 (2020), 2088-8708.
    [43] Y. Ding, W. Zhang, L. Yu, K. Lu, The accuracy and efficiency of GA and PSO optimization schemes on estimating reaction kinetic parameters of biomass pyrolysis, Energy, 176 (2019), 582-588. doi: 10.1016/j.energy.2019.04.030
    [44] E. Keybondorian, A. Taherpour, A. Bemani, T. Hamule, Application of novel ANFIS-PSO approach to predict asphaltene precipitation, Petrol. Sci. Technol., 36 (2018), 154-159. doi: 10.1080/10916466.2017.1411948
    [45] N. Ghorbani, A. Kasaeian, A. Toopshekan, L. Bahrami, A. Maghami, Optimizing a hybrid wind-PV-battery system using GA-PSO and MOPSO for reducing cost and increasing reliability, Energy, 154 (2018), 581-591. doi: 10.1016/j.energy.2017.12.057
    [46] G. Wang, J. Guo, Y. Chen, Y. Li, Q. Xu, A PSO and BFO-based learning strategy applied to faster R-CNN for object detection in autonomous driving, IEEE Access, 7 (2019), 18840-18859. doi: 10.1109/ACCESS.2019.2897283
    [47] K. Long, X. Wang, X. Gu, Multi-material topology optimization for the transient heat conduction problem using a sequential quadratic programming algorithm, Eng. Optimiz., 50 (2018), 2091-2107. doi: 10.1080/0305215X.2017.1417401
    [48] S. Sun, Geometric optimization of radiative enclosures using sequential quadratic programming algorithm, ES Energy Environ., 6 (2019), 57-68.
    [49] G. Torrisi, S. Grammatico, R. S. Smith, M. Morari, A variant to sequential quadratic programming for nonlinear model predictive control. In: 2016 IEEE 55th Conference on Decision and Control (CDC), 2814-2819. IEEE, 2016.
    [50] G. Singh, M. Rattan, S. S. Gill, N. Mittal, Hybridization of water wave optimization and sequential quadratic programming for cognitive radio system, Soft Comput., 23 (2019), 7991-8011. doi: 10.1007/s00500-018-3437-x
    [51] R. Hult, M. Zanon, G. Frison, S. Gros, P. Falcone, Experimental validation of a semi‐distributed sequential quadratic programming method for optimal coordination of automated vehicles at intersections, Optim. Contr. Appl. Met., 41 (2020), 1068-1096. doi: 10.1002/oca.2592
    [52] M. Umar, Z. Sabir, M. A. Z. Raja, M. Shoaib, M. Gupta, Y. G. Sánchez, A Stochastic Intelligent Computing with Neuro-Evolution Heuristics for Nonlinear SITR System of Novel COVID-19 Dynamics, Symmetry, 12 (2020), 1628. doi: 10.3390/sym12101628
    [53] T. N. Cheema, M. A. Z. Raja, I. Ahmad, S. Naz, H. Ilyas, M. Shoaib, Intelligent computing with Levenberg-Marquardt artificial neural networks for nonlinear system of COVID-19 epidemic model for future generation disease control, Eur. Phys. J. Plus, 135 (2020), 1-35. doi: 10.1140/epjp/s13360-019-00059-2
    [54] M. Umar, Z. Sabir, I. Ali, H. A. Wahab, M. Shoaib, M. A. Z. Raja, The 3-D flow of Casson nanofluid over a stretched sheet with chemical reactions, velocity slip, thermal radiation and Brownian motion, Therm. Sci., 24 (2020), 2929. doi: 10.2298/TSCI190625339U
    [55] M. Shoaib, M. A. Z. Raja, M. T. Sabir, S. Islam, Z. Shah, P. Kumam, H. Alrabaiah, Numerical investigation for rotating flow of MHD hybrid nanofluid with thermal radiation over a stretching sheet, Sci. Rep., 10 (2020), 1-15. doi: 10.1038/s41598-019-56847-4
    [56] Z. Shah, M. A. Z. Raja, Y. M. Chu, W. A. Khan, M. Waqas, M. Shoaib, et al. Design of neural network based intelligent computing for neumerical treatment of unsteady 3D flow of Eyring-Powell magneto-nanofluidic model, J. Mater. Res. Technol., 9 (2020), 14372-14387. doi: 10.1016/j.jmrt.2020.09.098
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1960) PDF downloads(67) Cited by(29)

Article outline

Figures and Tables

Figures(5)  /  Tables(4)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog