Research article

Fixed point theorems in R-metric spaces with applications

  • Received: 24 October 2019 Accepted: 10 March 2020 Published: 24 March 2020
  • MSC : 54H25, 47H10

  • The purpose of this paper is to introduce the notion of R-metric spaces and give a real generalization of Banach fixed point theorem. Also, we give some conditions to construct the Brouwer fixed point. As an application, we find the existence of solution for a fractional integral equation.

    Citation: Siamak Khalehoghli, Hamidreza Rahimi, Madjid Eshaghi Gordji. Fixed point theorems in R-metric spaces with applications[J]. AIMS Mathematics, 2020, 5(4): 3125-3137. doi: 10.3934/math.2020201

    Related Papers:

  • The purpose of this paper is to introduce the notion of R-metric spaces and give a real generalization of Banach fixed point theorem. Also, we give some conditions to construct the Brouwer fixed point. As an application, we find the existence of solution for a fractional integral equation.


    加载中


    [1] C. T. Aage, J. N. Salunke, Fixed points of weak contractions in cone metric spaces, Ann. Funct. Anal., 2 (2011), 71.
    [2] M. Abbas, G. Jungck, Common fixed point results for noncommuting mappings without continuity in cone metric spaces, J. Math. Anal. Appl., 341 (2008), 416-420.
    [3] A. N. Abdou, M. A. Khamsi, Fixed point results of pointwise contractions in modular metric spaces, Fixed Point Theory Appl., (2013), 163.
    [4] S. Aleksic, Z. Kadelburg, Z. D. Mitrovic, et al. A new survey: Cone metric spaces, J. Int. Math. Virtual Institute., 9 (2019), 93-121.
    [5] H. Baghani, M. E. Gordji, M. Ramezani, Orthogonal sets: The axiom of choice and proof of a fixed point theorem, J. Fixed Point Theory Appl., 18 (2016), 465-477. doi: 10.1007/s11784-016-0297-9
    [6] S. Banach, Sur les operations dans les ensembles abstrits et leur applications aux equations integrals, Fund. Math., 3 (1922), 133-181.
    [7] L. E. Brouwer, Uber Abbildung von Mannigfaltigkeiten, Math Ann., 71 (1912), 97-115.
    [8] V. V. Chistyakov, Modular metric spaces, I: basic concepts, Nonlinear Anal., 72 (2010), 1-14.
    [9] V. V. Chistyakov, Modular metric spaces, II: application to superposition operators, Nonlinear Anal., 72 (2010), 15-30.
    [10] S. H. Cho, J. S. Bae, Fixed point theorems for multivalued maps in cone metric spaces, Fixed Point Theory Appl., 2011 (2011), Article number: 87.
    [11] L. Ciric, Some Recent Results in Metrical Fixed Point Theory, University of Belgrade, Beograd, 2003.
    [12] G. Deng, H. Huang, M. Cvetkovic, et al. Cone valued measure of noncompactness and related fixed point theorems, Bull. Int. Math. Virtual Inst., 8 (2018), 233-243.
    [13] M. Eshaghi Gordji, H Habibi, Fixed point theory in generalized orthogonal metric space, J. Linear Topol. Algeb., 6 (2017), 251-260.
    [14] M. Eshaghi Gordji, M. Ramezani, M. De La Sen, et al. On orthogonal sets and Banach fixed point theorem, Fixed Point Theory., 18 (2017), 569-578. doi: 10.24193/fpt-ro.2017.2.45
    [15] L. G. Huang, X. Zhang, Cone metric spaces and fixed point theorems of contractive mappings, J. Math. Anal. Appl., 332 (2007), 1468-1476.
    [16] D. Ilic, V. Rakocevic, Common fixed points for maps on cone metric space, J. Math. Anal. Appl., 341 (2008), 876-882. doi: 10.1016/j.jmaa.2007.10.065
    [17] S. Kakutani, A generalization of Brouwer fixed point theorem, Duke Math. J., 8 (1941), 457-459. doi: 10.1215/S0012-7094-41-00838-4
    [18] M. A. Khamsi, W. K. Kozlowski, S. Reich, Fixed point theory in modular function spaces, Nonlinear Anal., 14 (1990), 935-953.
    [19] M. A. Khamsi, N. Hussain, KKM mappings in metric type spaces, Nonlinear Anal., 73 (2010), 3123-3129.
    [20] W. Kirk, N. Shahzad, Fixed Point Theory in Disatnce Spaces, Springer International Publishing Switzeralan, 2014.
    [21] N. Mehmood, A. Al Rawashdeh, S. Radenovic, New fixed point results for E-metric spaces, Positivity, 23 (2019), 1101-1111.
    [22] S. B. Nadler, Multi-valued contraction mappings, Pacific J. Mafh., 30 (1969), 475-488.
    [23] F. J. Nash, Equilibrium points in n-person game, Proc. Natl. Acad. Sci. USA., 36 (1950), 48-49. doi: 10.1073/pnas.36.1.48
    [24] J. J. Nieto, R. Rodri Guez-Lo'Pez, Contractive Mapping Theorems in Partially Ordered Sets and Applications to Ordinary Differential Equations, Order 22 (2005), 223-239.
    [25] M. A. Noor, An iterative algorithm for variational inequalities, J. Math. Anal. Appl., 158 (1991), 448-455.
    [26] Z. Pales, I-R. Petre, Iterative fixed point theorems in E-metric spaces, Acta Math. Hung., 140 (2013), 134-144.
    [27] E. De Pascale, G. Marino, P. Pietramala, The use of the E-metric spaces in the search for fixed points, Matematiche, 48 (1993), 367-376.
    [28] M. Ramezani, Orthogonal metric space and convex contractions, Int. J. Nonlinear Anal. Appl., 6 (2015), 127-132.
    [29] M. Ramezani, H. Baghani, Contractive gauge functions in strongly orthogonal metric spaces, Int. J. Nonlinear Anal. Appl., 8 (2017), 23-28.
    [30] A. C. M. Ran, M. C. B. Reurings, A fixed point theorem in partially ordered sets and some applications to matrix equations, Proc. Am. Math. Soc., 132 (2004), 1435-1443.
    [31] A. Al-Rawashdeh, W. Shatanawi, M. Khandaqji, Normed ordered and E-metric spaces, Int. J. Math. Sci., 2012 (2012), ID 272137.
    [32] W. Rudin, Principles of mathematical analysis, thired edition, McGraw-Hill, Inc, 1976.
    [33] V. Todorcevic, Harmonic Quasiconformal Mappings and Hyperbolic Type Metrics, Springer Nature Switzerland AG, 2019.
    [34] D. Turkoglu, M. Abuloha, A. bdeljawad T: KKM mappings in cone metric spaces and some fixed point theorems, Nonlinear Anal., 72 (2010), 348-353.
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(7564) PDF downloads(1114) Cited by(22)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog