Editorial Special Issues

Materials for Additive Manufacturing

  • Received: 31 August 2022 Revised: 31 August 2022 Accepted: 31 August 2022 Published: 30 September 2022
  • This Special Issue of AIMS Materials Science was devoted to the topic "Materials for Additive Manufacturing". It attracted significant attention from scholars and practitioners from ten different countries (Spain, Greece, France, Portugal, Italy, Finland, Ethiopia, Canada, Vietnam, and Iraq) and published five manuscripts of a total of ten submissions between April 2021 and March 2022. In addition, new materials, methodologies, and analysis approaches are presented in materials for additive manufacturing.

    Citation: John D. Kechagias. Materials for Additive Manufacturing[J]. AIMS Materials Science, 2022, 9(6): 785-790. doi: 10.3934/matersci.2022048

    Related Papers:

  • This Special Issue of AIMS Materials Science was devoted to the topic "Materials for Additive Manufacturing". It attracted significant attention from scholars and practitioners from ten different countries (Spain, Greece, France, Portugal, Italy, Finland, Ethiopia, Canada, Vietnam, and Iraq) and published five manuscripts of a total of ten submissions between April 2021 and March 2022. In addition, new materials, methodologies, and analysis approaches are presented in materials for additive manufacturing.



    加载中


    [1] Wei Z, Wu J, Shi N, et al. (2020) Review of conformal cooling system design and additive manufacturing for injection molds. Math Biosci Eng 17: 5414–5431. https://doi.org/10.3934/mbe.2020292 doi: 10.3934/mbe.2020292
    [2] Chanes-Cuevas OA, Perez-Soria A, Cruz-Maya I, et al. (2018) Macro-, micro- and mesoporous materials for tissue engineering applications. AIMS Mater Sci 5: 1124–1140. https://doi.org/10.3934/matersci.2018.6.1124 doi: 10.3934/matersci.2018.6.1124
    [3] Gibbons GJ, Williams R, Purnell P, et al. (2010) 3D Printing of cement composites. Adv Appl Ceram 109: 287–290. https://doi.org/10.1179/174367509X12472364600878 doi: 10.1179/174367509X12472364600878
    [4] Chaidas D, Kechagias JD (2022) An investigation of PLA/W parts quality fabricated by FFF. Mater Manuf Process 37: 582–590. https://doi.org/10.1080/10426914.2021.1944193 doi: 10.1080/10426914.2021.1944193
    [5] Fountas NA, Kechagias JD, Zaoutsos SP, et al. (2022) Experimental and statistical study on the effects of fused filament fabrication parameters on the tensile strength of hybrid PLA/wood fabricated parts. Procedia Struct Integr 41: 638–645. https://doi.org/10.1016/j.prostr.2022.05.072 doi: 10.1016/j.prostr.2022.05.072
    [6] Pervaiz S, Qureshi TA, Kashwani G, et al. (2021) 3D printing of fiber-reinforced plastic composites using fused deposition modeling: A status review. Materials 14: 4520. https://doi.org/10.3390/ma14164520 doi: 10.3390/ma14164520
    [7] Tay YWD, Panda B, Paul SC, et al. (2017) 3D printing trends in building and construction industry: a review. Virtual Phys Prototy 12: 261–276. https://doi.org/10.1080/17452759.2017.1326724 doi: 10.1080/17452759.2017.1326724
    [8] Kechagias J, Chaidas D, Vidakis N, et al. (2022) Key parameters controlling surface quality and dimensional accuracy: a critical review of FFF process. Mater Manuf Process 37: 963–984. https://doi.org/10.1080/10426914.2022.2032144 doi: 10.1080/10426914.2022.2032144
    [9] Özel T, Patel K, Fei J, et al. (2019) Cutting force investigation in face milling of additively fabricated nickel alloy 625 via powder bed fusion. Int J Mechatron Manuf Syst 12: 196. https://doi.org/10.1504/IJMMS.2019.10025072 doi: 10.1504/IJMMS.2019.10025072
    [10] Yadav P, Fu Z, Knorr M, et al. (2020) Binder jetting 3D printing of titanium aluminides based materials: A feasibility study. Adv Eng Mater 22: 2000408. https://doi.org/10.1002/adem.202000408 doi: 10.1002/adem.202000408
    [11] Todaro CJ, Easton MA, Qiu D, et al. (2020) Grain structure control during metal 3D printing by high-intensity ultrasound. Nat Commun 11: 142. https://doi.org/10.1038/s41467-019-13874-z doi: 10.1038/s41467-019-13874-z
    [12] Cheng YL, Chang CH, Kuo C (2020) Experimental study on leveling mechanism for material-jetting-type color 3D printing. Rapid Prototyp J 26: 11–20. https://doi.org/10.1108/RPJ-09-2018-0227 doi: 10.1108/RPJ-09-2018-0227
    [13] Kechagias J (2007) Investigation of LOM process quality using design of experiments approach. Rapid Prototyp J 13: 316–323. https://doi.org/10.1108/13552540710824823 doi: 10.1108/13552540710824823
    [14] Kechagias JD, Vidakis N (2022) Parametric optimization of material extrusion 3D printing process: an assessment of Box-Behnken vs. full-factorial experimental approach. Int J Adv Manuf Tech 121: 3163–3172. https://doi.org/10.1007/s00170-022-09532-2 doi: 10.1007/s00170-022-09532-2
    [15] Kechagias J, Anagnostopoulos V, Zervos S, et al. (1997) Estimation of build times in rapid prototyping processes. 6th European Conference on Rapid Prototyping & Manufacturing, Nottingham, 137–148.
    [16] Hiremath P, Gowrishankar MC, Shettar M, et al. (2021) Influence of normalizing post carburizing treatment on microstructure, mechanical properties and fracture behavior of low alloy gear steels. AIMS Mater Sci 8: 836–851. https://doi.org/10.3934/matersci.2021051 doi: 10.3934/matersci.2021051
    [17] Di Schino A (2019) Corrosion behavior of new generation super-ferritic stainless steels. AIMS Mater Sci 6: 646–656. https://doi.org/10.3934/matersci.2019.5.646 doi: 10.3934/matersci.2019.5.646
    [18] Soyama H, Okura Y (2018) The use of various peening methods to improve the fatigue strength of titanium alloy Ti6Al4V manufactured by electron beam melting. AIMS Mater Sci 5: 1000–1015. https://doi.org/10.3934/matersci.2018.5.1000 doi: 10.3934/matersci.2018.5.1000
    [19] Gladman AS, Garcia-Leiner M, Sauer-Budge AF (2019) Emerging polymeric materials in additive manufacturing for use in biomedical applications. AIMS Bioeng 6: 1–20. https://doi.org/10.3934/bioeng.2019.1.1 doi: 10.3934/bioeng.2019.1.1
    [20] Kechagias J, Maropoulos S, Karagiannis S (2004) Process build‐time estimator algorithm for laminated object manufacturing. Rapid Prototyp J 10: 297–304. https://doi.org/10.1108/13552540410562331 doi: 10.1108/13552540410562331
    [21] Ambrosi A, Pumera M (2016) 3D-printing technologies for electrochemical applications. Chem Soc Rev 45: 2740–2755. https://doi.org/10.1039/C5CS00714C doi: 10.1039/C5CS00714C
    [22] Reddy YP, Narayana KL, Mallik MK (2022) Experimental evaluation of additively deposited functionally graded material samples-microscopic and spectroscopic analysis of SS-316L/Co-Cr-Mo alloy. AIMS Mater Sci 9: 653–667. https://doi.org/10.3934/matersci.2022040 doi: 10.3934/matersci.2022040
    [23] Muhammad MS, Kerbache L, Elomri A (2021) Potential of additive manufacturing for upstream automotive supply chains. Supply Chain Forum 23: 1–19. https://doi.org/10.1080/16258312.2021.1973872 doi: 10.1080/16258312.2021.1973872
    [24] Joshi SC, Sheikh AA (2015) 3D printing in aerospace and its long-term sustainability. Virtual Phys Prototy 10: 175–185. https://doi.org/10.1080/17452759.2015.1111519 doi: 10.1080/17452759.2015.1111519
    [25] Wu L, Dai N, Wang H (2021) Evaluation of rods deformation of metal lattice structure in additive manufacturing based on skeleton extraction technology. Math Biosci Eng 18: 7525–7538. https://doi.org/10.3934/mbe.2021372 doi: 10.3934/mbe.2021372
    [26] Liu Z, Zhang P, Yan M, et al. (2019) Additive manufacturing of specific ankle-foot orthoses for persons after stroke: A preliminary study based on gait analysis data. Math Biosci Eng 16: 8134-8143. https://doi.org/10.3934/mbe.2019410 doi: 10.3934/mbe.2019410
    [27] Borgianni Y, Pradel P, Berni A, et al. (2022) An investigation into the current state of education in design for additive manufacturing. J Eng Design 33: 461–490. https://doi.org/10.1080/09544828.2022.2102893 doi: 10.1080/09544828.2022.2102893
    [28] He C, Zhang M, Fang Z (2020) 3D printing of food: pretreatment and post-treatment of materials. Crit Rev Food Sci 60: 2379–2392. https://doi.org/10.1080/10408398.2019.1641065 doi: 10.1080/10408398.2019.1641065
    [29] Javaid M, Haleem A (2019) Using additive manufacturing applications for design and development of food and agricultural equipments. Int J Mater Prod Tec 58: 225-238. https://doi.org/10.1504/IJMPT.2019.097662 doi: 10.1504/IJMPT.2019.097662
    [30] Spahiu T, Al-Arabiyat M, Martens Y, et al. (2018) Adhesion of 3D printing polymers on textile fabrics for garment production. IOP Conf Ser-Mater Sci Eng 459: 012065. https://doi.org/10.1088/1757-899X/459/1/012065 doi: 10.1088/1757-899X/459/1/012065
    [31] Kumar P, Sharma SK, Singh RKR (2022) Recent trends and future outlooks in manufacturing methods and applications of FGM: a comprehensive review. Mater Manuf Process 1–35. https://doi.org/10.1080/10426914.2022.2075892
    [32] Zhou LY, Fu J, He Y (2020) A review of 3D printing technologies for soft polymer materials. Adv Funct Mater 30: 2000187. https://doi.org/10.1002/adfm.202000187 doi: 10.1002/adfm.202000187
    [33] Rafiee M, Abidnejad R, Ranta A, et al. (2021) Exploring the possibilities of FDM filaments comprising natural fiber-reinforced biocomposites for additive manufacturing. AIMS Mater Sci 8: 524–537. https://doi.org/10.3934/matersci.2021032 doi: 10.3934/matersci.2021032
    [34] Volpe S, Petrella A, Sangiorgio V, et al. (2021) Preparation and characterization of novel environmentally sustainable mortars based on magnesium potassium phosphate cement for additive manufacturing. AIMS Mater Sci 8: 640–658. https://doi.org/10.3934/matersci.2021039 doi: 10.3934/matersci.2021039
    [35] Martinez L, Palessonga D, Roquefort P, et al. (2021) Development of a high temperature printable composite for microwave absorption applications. AIMS Mater Sci 8: 739–747. https://doi.org/10.3934/matersci.2021044 doi: 10.3934/matersci.2021044
    [36] Mendizabal MA, Garcia M, Palenzuela L, et al. (2022) Obtaining preforms by additive fused deposition modelling (FDM) extrusion technology for the manufacture of high-performance composites. AIMS Mater Sci 9: 481–497. https://doi.org/10.3934/matersci.2022028 doi: 10.3934/matersci.2022028
    [37] Psihoyos HO, Lampeas GN (2022) Efficient thermomechanical modelling of Laser Powder Bed Fusion additive manufacturing process with emphasis on parts residual stress fields. AIMS Mater Sci 9: 455–480. https://doi.org/10.3934/matersci.2022027 doi: 10.3934/matersci.2022027
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1743) PDF downloads(172) Cited by(7)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog