Perspective

Quantumness of correlations in nanomaterials—experimental evidence and unconventional effects

  • Received: 28 January 2022 Revised: 22 April 2022 Accepted: 26 April 2022 Published: 19 May 2022
  • Quantum correlations phenomena, such as entanglement, quantum discord and quantum coherence, are ubiquitous effects caused by interactions between physical systems—such as electrons and ions in a piece of metal, or H atoms/molecules adsorbed in nanoporous materials. Here, we address time-asymmetric quantumness of correlations (QoC), with particular emphasis on their energetic consequences for dynamics and non-equilibrium thermodynamics in condensed matter and/or many-body systems. Some known theoretical models—for example, the quantum Zeno effect and GKSL-type Markovian equations-of-motion, all of them being time-asymmetric—are shortly considered, with emphasis on the general character of one of their common and most intriguing result. Namely, that in clear contradistinction to conventional expectations, degradation (or destruction, decoherence, consumption, smearing out, coarse-graining) of quantum correlations can be a source of work (instead of heat production). The experimental relevance of the theoretical considerations is shown with the aid of a recent scattering experiment exploring the impulsively driven (by neutron collisions) translational dynamics of H$ _2 $ molecules in carbon nanotubes and other nanostructured materials—a topic of immediate relevance for material sciences and related technologies.

    Citation: C. Aris Chatzidimitriou-Dreismann. Quantumness of correlations in nanomaterials—experimental evidence and unconventional effects[J]. AIMS Materials Science, 2022, 9(3): 382-405. doi: 10.3934/matersci.2022023

    Related Papers:

  • Quantum correlations phenomena, such as entanglement, quantum discord and quantum coherence, are ubiquitous effects caused by interactions between physical systems—such as electrons and ions in a piece of metal, or H atoms/molecules adsorbed in nanoporous materials. Here, we address time-asymmetric quantumness of correlations (QoC), with particular emphasis on their energetic consequences for dynamics and non-equilibrium thermodynamics in condensed matter and/or many-body systems. Some known theoretical models—for example, the quantum Zeno effect and GKSL-type Markovian equations-of-motion, all of them being time-asymmetric—are shortly considered, with emphasis on the general character of one of their common and most intriguing result. Namely, that in clear contradistinction to conventional expectations, degradation (or destruction, decoherence, consumption, smearing out, coarse-graining) of quantum correlations can be a source of work (instead of heat production). The experimental relevance of the theoretical considerations is shown with the aid of a recent scattering experiment exploring the impulsively driven (by neutron collisions) translational dynamics of H$ _2 $ molecules in carbon nanotubes and other nanostructured materials—a topic of immediate relevance for material sciences and related technologies.



    加载中


    [1] Horodecki R, Horodecki P, Horodecki M, et al. (2009) Quantum entanglement. Rev Mod Phys 81: 865–942. https://doi.org/10.1103/RevModPhys.81.865 doi: 10.1103/RevModPhys.81.865
    [2] Einstein A, Podolsky B, Rosen N (1935) Can quantum-mechanical description of physical reality be considered complete? Phys Rev 47: 777–780. https://doi.org/10.1103/PhysRev.47.777 doi: 10.1103/PhysRev.47.777
    [3] Henderson L, Vedral V (2001) Classical, quantum and total correlations. J Phys A: Math Gen 34: 6899–6905. https://doi.org/10.1088/0305-4470/34/35/315 doi: 10.1088/0305-4470/34/35/315
    [4] Ollivier H, Zurek WH (2002) Quantum discord: A measure of the quantumness of correlations. Phys Rev Lett 88: 017901. https://doi.org/10.1103/PhysRevLett.88.017901 doi: 10.1103/PhysRevLett.88.017901
    [5] Nielsen MA, Chuang I (2010) Quantum Computation and Quantum Information, 2Eds., Cambridge: Cambridge University Press. https://doi.org/10.1017/CBO9780511976667
    [6] Arute F, Arya K, Babbush R, et al. (2019) Quantum supremacy using a programmable superconducting processor. Nature 574: 505–510. https://doi.org/10.1038/s41586-019-1666-5 doi: 10.1038/s41586-019-1666-5
    [7] Elitzur AC, Vaidman L (1993) Quantum mechanical interaction-free measurements. Found Phys 23: 987–997. https://doi.org/10.1007/BF00736012 doi: 10.1007/BF00736012
    [8] Landauer R (1991) Information is physical. Phys Today 44: 23–29. https://doi.org/10.1063/1.881299
    [9] Bennett CH (1982) The thermodynamics of computation–-A review. Int J Theor Phys 21: 905–940. https://doi.org/10.1007/BF02084158 doi: 10.1007/BF02084158
    [10] Maruyama K, Nori F, Vedral V (2009) The physics of Maxwell's demon and information. Rev Mod Phys 81: 1–23. https://doi.org/10.1103/RevModPhys.81.1 doi: 10.1103/RevModPhys.81.1
    [11] Modi K, Brodutch A, Cable H, et al. (2012) The classical-quantum boundary for correlations: Discord and related measures. Rev Mod Phys 84: 1655–1707. https://doi.org/10.1103/RevModPhys.84.1655 doi: 10.1103/RevModPhys.84.1655
    [12] Lang MD, Caves CM, Shaji A (2011) Entropic measures of non-classical correlations. Int J Quantum Inform 9: 1553–1586. https://doi.org/10.1142/S021974991100826X doi: 10.1142/S021974991100826X
    [13] del Rio L, Åberg J, Renner R, et al. (2011) The thermodynamic meaning of negative entropy. Nature 474: 61–63. https://doi.org/10.1038/nature10123 doi: 10.1038/nature10123
    [14] Zurek WH (2003) Quantum discord and Maxwell's demons. Phys Rev A 67: 012320. https://doi.org/10.1103/PhysRevA.67.012320 doi: 10.1103/PhysRevA.67.012320
    [15] Oppenheim J, Horodecki M, Horodecki P, et al. (2002) Thermodynamical approach to quantifying quantum correlations. Phys Rev Lett 89: 180402. https://doi.org/10.1103/PhysRevLett.89.180402 doi: 10.1103/PhysRevLett.89.180402
    [16] Schlosshauer M (2007) Decoherence and the Quantum-to-Classical Transition, Berlin: Springer. https://doi.org/10.1007/978-3-540-35775-9
    [17] Kubo R (1957) Statistical-mechanical theory of irreversible processes. I. General theory and Simple applications to magnetic anc conduction problems. J Phys Soc Jpn 12: 570–586. https://doi.org/10.1143/JPSJ.12.570 doi: 10.1143/JPSJ.12.570
    [18] Van Kampen NG (1971) The case against linear response theory. Physica Norvegica 5: 279–284.
    [19] Van Vliet KM (1978) Linear response theory revisted. I. The many-body van Hove limit. J Math Phys 19: 1345–1370. https://doi.org/10.1063/1.523833 doi: 10.1063/1.523833
    [20] Van Vliet CM (1988) On van Kampen's objections against linear response theory. J Stat Phys 53: 49–60. https://doi.org/10.1007/BF01011544 doi: 10.1007/BF01011544
    [21] Van Kampen NG (1962) Fundamental problems in statistical mechanics of irreversible processes. In: Cohen EGD, Fundamental Problems in Statistical Mechanics, Amsterdam: North Holland, 173–202.
    [22] Falcioni M, Vulpiani A (1995) The relevance of chaos for the linear response theory. Physica A 215: 481–494. https://doi.org/10.1016/0378-4371(94)00277-Z doi: 10.1016/0378-4371(94)00277-Z
    [23] Misra B, Sudarshan ECG (1977) The Zeno's paradox in quantum theory. J Math Phys 18: 756–763. https://doi.org/10.1063/1.523304 doi: 10.1063/1.523304
    [24] Itano WM, Heinzen DJ, Bollinger JJ, et al. (1990) Quantum Zeno effect. Phys Rev A 41: 2295–2300. https://doi.org/10.1103/PhysRevA.41.2295 doi: 10.1103/PhysRevA.41.2295
    [25] Schulman LS (1997) Continuous and pulsed observations in the quantum Zeno effect. Phys Rev A 57: 1509–1515. https://doi.org/10.1103/PhysRevA.57.1509 doi: 10.1103/PhysRevA.57.1509
    [26] Kofman AG, Kurizki G (2000) Acceleration of quantum decay processes by frequent observations. Nature 405: 546–550. https://doi.org/10.1038/35014537 doi: 10.1038/35014537
    [27] Koshino K, Shimizu A (2005) Quantum Zeno effect by general measurements. Phys Rep 412: 191–275. https://doi.org/10.1016/j.physrep.2005.03.001 doi: 10.1016/j.physrep.2005.03.001
    [28] Squires GL (2012) Introduction to the Theory of Thermal Neutron Scattering, 3rd Ed., Cambridge: Cambridge University Press. https://doi.org/10.1017/CBO9781139107808
    [29] Van Hove L (1954) Correlations in space and time and Born approximation scattering in systems of interacting particles. Phys Rev 95: 249–262. https://doi.org/10.1103/PhysRev.95.249 doi: 10.1103/PhysRev.95.249
    [30] Chatzidimitriou-Dreismann CA, Abdul-Redah T, Streffer RMF, et al. (1997) Anomalous deep inelastic neutron scattering from liquid H$_2$O–D$_2$O: Evidence of nuclear quantum entanglement. Phys Rev Lett 79: 2839–2842. https://doi.org/10.1103/PhysRevLett.79.2839 doi: 10.1103/PhysRevLett.79.2839
    [31] Chatzidimitriou-Dreismann CA, Abdul-Redah T, Kolarić B (2001) Entanglement of protons in organic molecules: An attosecond neutron scattering study of C–H bond breaking J Am Chem Soc 123: 11945–11951. https://doi.org/10.1021/ja004186d doi: 10.1021/ja004186d
    [32] Cooper G, Hitchcock AP, Chatzidimitriou-Dreismann CA (2008) Anomalous quasielastic electron scattering from single H$_2$, D$_2$, and HD molecules at large momentum transfer: Indications of nuclear spin effects. Phys Rev Lett 100: 043204. https://doi.org/10.1103/PhysRevLett.100.043204 doi: 10.1103/PhysRevLett.100.043204
    [33] Gorini V, Kossakowski A, Sudarshan ECG (1976) Completely positive dynamical semigroups of N-level systems. J Math Phys 17: 821–825. https://doi.org/10.1063/1.522979 doi: 10.1063/1.522979
    [34] Lindblad G (1976) On the generators of quantum dynamical semigroups. Commun Math Phys 48: 119–130. https://doi.org/10.1007/BF01608499 doi: 10.1007/BF01608499
    [35] Joos E, Zeh HD (1985) The emergence of classical properties through interaction with the environment. Z Phys B 59: 223–243. https://doi.org/10.1007/BF01725541 doi: 10.1007/BF01725541
    [36] Ballentine LE (1991) Failure of some theories of state reduction. Phys Rev A 43: 9–12. https://doi.org/10.1103/PhysRevA.43.9 doi: 10.1103/PhysRevA.43.9
    [37] Gallis MR, Fleming GN (1991) Comparison of quantum open-system models with localization. Phys Rev A 43: 5778–5786. https://doi.org/10.1103/PhysRevA.43.5778 doi: 10.1103/PhysRevA.43.5778
    [38] Stenholm S (1993) Occurences, obervations and measurements in quantum mechanics. Phys Scr 47: 724–731. https://doi.org/10.1088/0031-8949/47/6/006 doi: 10.1088/0031-8949/47/6/006
    [39] Diósi L (1995) Quantum master equation of a particle in a gas environment. Europhys Lett 30: 63–68. https://doi.org/10.1209/0295-5075/30/2/001 doi: 10.1209/0295-5075/30/2/001
    [40] Rajagopal AK (1998) The principle of detailed balance and the Lindblad dissipative quantum dynamics. Phys Lett A 246: 237–241. https://doi.org/10.1016/S0375-9601(98)00463-0 doi: 10.1016/S0375-9601(98)00463-0
    [41] Ou C, Chamberlin RV, Abe S (2017) Lindbladian operators, von Neumann entropy and energy conservation in time-dependent quantum open systems. Physica A 466: 450–454. https://doi.org/10.1016/j.physa.2016.09.016 doi: 10.1016/j.physa.2016.09.016
    [42] Chatzidimitriou-Dreismann CA, Stenholm S (2005) On correlation approach to scattering in the decoherence timescale. In: Akulin VM, Sarfati A, Kurizki G, et al. Decoherence, Entanglement and Information Protection in Complex Quantum Systems, Dordrecht: Springer, 555–562. https://doi.org/10.1007/1-4020-3283-8_37
    [43] Schulman LS, Gaveau B (2006) Ratcheting up energy by eeans of measurement. Phys Rev Lett 97: 240405. https://doi.org/10.1103/PhysRevLett.97.240405 doi: 10.1103/PhysRevLett.97.240405
    [44] Gaveau B, Schulman LS (2010) Energetic consequences of decoherence at small times for coupled systems. J Phys A: Math Theor 43: 055308. https://doi.org/10.1088/1751-8113/43/5/055308 doi: 10.1088/1751-8113/43/5/055308
    [45] Olsen RJ, Beckner M, Stone MB, et al. (2013) Quantum excitation spectrum of hydrogen adsorbed in nanoporous carbons observed by inelastic neutron scattering. Carbon 58: 46–58. https://doi.org/10.1016/j.carbon.2013.02.026 doi: 10.1016/j.carbon.2013.02.026
    [46] Oak Ridge National Laboratory, Wide Angular-Range Chopper Spectrometer ARCS, Neutron Scattering Division. Available from: https://neutrons.ornl.gov/ARCS.
    [47] Chatzidimitriou-Dreismann CA (2020) Quantum confinement effects of hydrogen in nanocavities–-Experimental INS results and new insights. Rec Prog Mater 2: 1–53. https://doi.org/10.21926/rpm.2002015 doi: 10.21926/rpm.2002015
    [48] Mitchell PCH, Parker SF, Ramirez-Cuesta AJ, et al. (2005) Vibrational Spectroscopy with Neutrons, Singapore: World Scientific. https://doi.org/10.1142/5628
    [49] Diallo SO, Azuah RT, Abernathy DL, et al. (2012) Bose–Einstein condensation in liquid $^4$He near the liquid-solid transition line. Phys Rev B 85: 140505. https://doi.org/10.1103/PhysRevB.85.140505 doi: 10.1103/PhysRevB.85.140505
    [50] Chatzidimitriou-Dreismann CA (2015) Quantumness of correlations and Maxwell's demon in molecular excitations created by neutron scattering, Int J Quantum Chem 115: 909–929. https://doi.org/10.1002/qua.24935 doi: 10.1002/qua.24935
    [51] Chatzidimitriou-Dreismann CA (2020) Experimental Implications of negative quantum conditional entropy–-H$_2$ mobility in nanoporous materials. Appl Sci 10: 8266. https://doi.org/10.3390/app10228266 doi: 10.3390/app10228266
    [52] Science and Technology Facilities Council, MARI, ISIS facility. Available from: https://www.isis.stfc.ac.uk/Pages/mari.aspx.
    [53] Callear SK, Ramirez-Cuesta AJ, David WIF, et al. (2013) High-resolution inelastic neutron scattering and neutron powder diffraction study of the adsorption of dihydrogen by the Cu(Ⅱ) metal–organic framework material HKUST-1. Chem Phys 427: 9–17. https://doi.org/10.1016/j.chemphys.2013.07.020 doi: 10.1016/j.chemphys.2013.07.020
    [54] Chatzidimitriou-Dreismann CA (2021) Evidence of predictive power and experimental relevance of Weak-Values theory. Quantum Rep 3: 286–315. https://doi.org/10.3390/quantum3020018 doi: 10.3390/quantum3020018
    [55] Nordén B (2021) Which are the 'Hilbert Problems' of biophysics? QRB Discovery 2: 1–3. https://doi.org/10.1017/qrd.2020.15 doi: 10.1017/qrd.2020.15
    [56] Boysen H, Lerch M, Fernandez-Alonso F, et al. (2012) On the mechanism of proton conductivity in H$_3$OSbTeO$_6$. J Phys Chem Solids 73: 808–817. https://doi.org/10.1016/j.jpcs.2012.02.004 doi: 10.1016/j.jpcs.2012.02.004
    [57] Zhao H, Chakraborty P, Ponge D, et al. (2022) Hydrogen trapping and embrittlement in high-strength Al alloys. Nature 602: 437–441. https://doi.org/10.1038/s41586-021-04343-z doi: 10.1038/s41586-021-04343-z
    [58] Imanaka N, Radzi Iqbal Bin Misran M, Nunotani N (2021) Evidence for enormous iodide anion migration in lanthanum oxyiodide-based solid. Sci Adv 7: eabh0812. https://doi.org/10.1126/sciadv.abh0812 doi: 10.1126/sciadv.abh0812
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1764) PDF downloads(122) Cited by(0)

Article outline

Figures and Tables

Figures(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog