Due to the growing interest in developing bioplastic films from renewable sources, the performance of biocomposite films produced of native starch from cassava clones reinforced with cassava bagasse was explored. The biocomposites were prepared from the starch of cassava clones MMEXV5, MMEXV40, and MMEXCH23, reinforced with bagasse at 1%, 5%, and 15%. Their structural, mechanical, and thermal properties were subsequently assessed. When analyzing the starch, differences in the intensities of the Raman spectra exhibit a possible variation in the amylose-amylopectin ratio. In the biocomposites, the bagasse was efficiently incorporated into polymeric matrixes and their thermogravimetric analysis revealed the compatibility of the matrix-reinforcement. The starch films from the MMEXV40 clone showed better tension (2.53 MPa) and elastic modulus (60.49 MPa). The assessed mechanical properties were also affected by bagasse concentration. Because of the above, the MMEXV40 cassava clone showed potential to develop polymeric materials, given its tuberous roots high yield, starch extraction, and good performance in its mechanical properties. At the same time, the starch source (clone) and the bagasse concentration interfere with the final properties of the biocomposites.
Citation: José Luis Del Rosario-Arellano, Gloria Ivette Bolio-López, Alex Valadez-González, Luis Zamora-Peredo, Noé Aguilar-Rivera, Isaac Meneses-Márquez, Pablo Andrés-Meza, Otto Raúl Leyva-Ovalle. Exploration of cassava clones for the development of biocomposite films[J]. AIMS Materials Science, 2022, 9(1): 85-104. doi: 10.3934/matersci.2022006
Due to the growing interest in developing bioplastic films from renewable sources, the performance of biocomposite films produced of native starch from cassava clones reinforced with cassava bagasse was explored. The biocomposites were prepared from the starch of cassava clones MMEXV5, MMEXV40, and MMEXCH23, reinforced with bagasse at 1%, 5%, and 15%. Their structural, mechanical, and thermal properties were subsequently assessed. When analyzing the starch, differences in the intensities of the Raman spectra exhibit a possible variation in the amylose-amylopectin ratio. In the biocomposites, the bagasse was efficiently incorporated into polymeric matrixes and their thermogravimetric analysis revealed the compatibility of the matrix-reinforcement. The starch films from the MMEXV40 clone showed better tension (2.53 MPa) and elastic modulus (60.49 MPa). The assessed mechanical properties were also affected by bagasse concentration. Because of the above, the MMEXV40 cassava clone showed potential to develop polymeric materials, given its tuberous roots high yield, starch extraction, and good performance in its mechanical properties. At the same time, the starch source (clone) and the bagasse concentration interfere with the final properties of the biocomposites.
[1] | Ciardelli F, Bertoldo M, Bronco S, et al. (2019) Environmental impact, In: Ciardelli F, Bertoldo M, Bronco S, et al., Polymers from Fossil and Renewable Resources, 1 Ed., Cham: Springer, 161-187. https://doi.org/10.1007/978-3-319-94434-0 |
[2] | Aigbodion VS, Okonkwo EG, Akinlabi ET (2019) Eco-friendly polymer composite: State-of-arts, opportunities and challenge, In: Inamuddin TS, Kumar MR, Asiri A, Sustainable Polymer Composites and Nanocomposites, 1 Ed., Cham: Springer, 1233-1265. https://doi.org/10.1007/978-3-030-05399-4_42 |
[3] | Shankar S, Singh S, Mishra A, et al. (2019) Microbial degradation of polyethylene: Recent progress and challenges, In: Arora P, Microbial Metabolism of Xenobiotic Compounds. Microorganisms for Sustainability, 1 Ed., Singapore: Springer, 245-262. https://doi.org/10.1007/978-981-13-7462-3_12 |
[4] | Singh N, Duan H, Tang Y (2020) Toxicity evaluation of e-waste plastics and potential repercussions for human health. Environ Int 137: 105559. https://doi.org/10.1016/j.envint.2020.105559 doi: 10.1016/j.envint.2020.105559 |
[5] | Saturno J, Liboiron M, Ammendolia J, et al. (2020) Occurrence of plastics ingested by Atlantic cod (Gadus morhua) destined for human consumption (Fogo Island, Newfoundland and Labrador). Mar Pollut Bull 153: 110993. https://doi.org/10.1016/j.marpolbul.2020.110993 doi: 10.1016/j.marpolbul.2020.110993 |
[6] | Geyer R, Jambeck RJ, Lavender LK (2017) Production, use, and fate of all plastics ever made. Sci Adv 3: 25-29. https://doi.org/10.1126/sciadv.1700782 doi: 10.1126/sciadv.1700782 |
[7] | New Market Data 2019: Bioplastics Industry Continues Dynamic Grow Over the Next Five Years. European Bioplastics, 2019. Available from: https://www.european-bioplastics.org/new-market-data-2019-bioplastics-industry-continues-dynamic-grow-over-the-next-five-years/. |
[8] | Babayemi JO, Nnorom IC, Osibanjo O, et al. (2019) Ensuring sustainability in plastics use in Africa: consumption, waste generation, and projections. Environ Sci Eur 31: 20. https://doi.org/10.1186/s12302-019-0254-5 doi: 10.1186/s12302-019-0254-5 |
[9] | Andrade JC, Acosta DL, Bucheli MA, et al. (2014) Development of an edible coating compound for the conservation of tree tomato (Cyphomandra betacea S.). Inf Tecnol 25: 57-66 (In Spanish). http://dx.doi.org/10.4067/S0718-07642014000600008 doi: 10.4067/S0718-07642014000600008 |
[10] | Edhirej A, Sapuan SM, Jawaid M, et al. (2015) Cassava: Its polymer, fiber, composite, and application. Polym Composite 38: 555-570. https://doi.org/10.1002/pc.23614 doi: 10.1002/pc.23614 |
[11] | IfBB, Biopolymers—Facts and Statistics: Production Capacities, Processing Routes, Feedstock, Land and Water Use. Institute for Bioplastics and Biocomposites, 2019. Available from: https://www.ifbb-hannover.de/en/facts-and-statistics.html. |
[12] | Crops and Livestock Products. FAOSTAT, 2020. Available from: https://www.fao.org/faostat/en/#data/QCL. |
[13] | World Population Prospects. United Nations, Department of Economic and Social Affairs, Population Division, 2019. Available from: https://population.un.org/wpp/. |
[14] | Sharma HK, Kaushal P (2016) Introduction to tropical roots and tubers, In: Sharma HK, Njintang NY, Singhal RS, et al., Tropical Roots and Tubers: Production, Processing and Technology, 1 Ed., Hoboken: John Wiley & Sons, 1-33. https://doi.org/10.1002/9781118992739.ch1 |
[15] | Shigaki T (2016) Cassava: Nature and uses. In: Caballero B, Finglas P, Toldra F, Encyclopedia of Food and Health, 1 Ed., Oxford: Elsevier, 687-693. https://doi.org/10.1016/B978-0-12-384947-2.00124-0 |
[16] | Cock JH (2019) Cassava: New Potential for a Neglected Crop, Boca Raton: CRC Press. https://doi.org/10.1201/9780429049064 |
[17] | Mtunguja MK, Laswai HS, Muzanila YC, et al. (2014) Farmer's knowledge on selection and conservation of cassava (Manihot esculenta) genetic resources in Tanzania. J Biol Agric Healthc 4: 120-129. |
[18] | Parmar A, Sturm B, Hensel O (2017) Crops that feed the world: Production and improvement of cassava for food, feed, and industrial uses. Food Secur 9: 907-927. https://doi.org/10.1007/s12571-017-0717-8 doi: 10.1007/s12571-017-0717-8 |
[19] | Alarcon F, Dufour D (1998) Sour Starch from Cassava in Colombia. Production and Recommendations, Cali: CIAT, 9-24 (In Spanish). Available from: https://www.clayuca.org/sitio/images/publicaciones/almidon_agrio_tomo_1.pdf. |
[20] | Chisenga SM, Workneh TS, Bultosa G, et al. (2019) Progress in research and applications of cassava flour and starch: a review. J Food Sci Tech 56: 2799-28131. https://doi.org/10.1007/s13197-019-03814-6 doi: 10.1007/s13197-019-03814-6 |
[21] | Arifin B, Sugita P, Masyudi DE (2016) Chitosan and lauric acid addition to corn starch-film based effect: Physical properties and antimicrobial activity study. Int J Chem Sci 14: 529-544. |
[22] | Dharmalingam K, Anandalakshmi R (2019) Polysaccharide-based films for food packaging ppplications, In: Katiyar V, Gupta R, Ghosh T, Advances in Sustainable Polymers. Materials Horizons: From Nature to Nanomaterials, 1 Ed., Singapore: Springer, 183-207. https://doi.org/10.1007/978-981-32-9804-0_9 |
[23] | Teodoro AP, Mali S, Romero N, et al. (2015) Cassava starch films containing acetylated starch nanoparticles as reinforcement: Physical and mechanical characterization. Carbohyd Polym 126: 9-16. https://doi.org/10.1016/j.carbpol.2015.03.021 doi: 10.1016/j.carbpol.2015.03.021 |
[24] | Krishnamurthy A, Amritkumar P (2019) Synthesis and characterization of eco-friendly bioplastic from low-cost plant resources. SN Appl Sci 1: 1432. https://doi.org/10.1007/s42452-019-1460-x doi: 10.1007/s42452-019-1460-x |
[25] | Sagnelli D, Hebelstrup KH, Leroy E, et al. (2016) Plant-crafted starches for bioplastics production. Carbohyd Polym 152: 398-408. https://doi.org/10.1016/j.carbpol.2016.07.039 doi: 10.1016/j.carbpol.2016.07.039 |
[26] | Luchese CL, Spada JC, Tessaro IC (2017) Starch content affects physicochemical properties of corn and cassava starch-based films. Ind Crop Prod 109: 619-626. https://doi.org/10.1016/j.indcrop.2017.09.020 doi: 10.1016/j.indcrop.2017.09.020 |
[27] | Berthet AM, Angellier-Coussy H, Guillard V, et al. (2016) Vegetal fiber-based biocomposites: Which stakes for food packaging applications? J Appl Polym Sci 133: 1-18. https://doi.org/10.1002/app.42528 doi: 10.1002/app.42528 |
[28] | Noorjahan SE, Sekar S, Sastry TP (2008) Preparation and characterization of cellulose triacetate from Musa paradisiaca and cellulose triacetate-polyvinyl chloride blends. Curr Sci 95: 958-962. |
[29] | Jonoobi M, Oladi R, Davoudpour Y, et al. (2015) Different preparation methods and properties of nanostructured cellulose from various natural resources and residues: a review. Cellulose 2: 935-969. https://doi.org/10.1007/s10570-015-0551-0 doi: 10.1007/s10570-015-0551-0 |
[30] | Li S, Cui Y, Zhou Y, et al. (2017) The industrial applications of cassava: Current status, opportunities and prospects. J Sci Food Agric 97: 2282-2290. https://doi.org/10.1002/jsfa.8287 doi: 10.1002/jsfa.8287 |
[31] | Trakulvichean S, Chaiprasert P, Otmakhova J, et al. (2017) Integrated economic and environmental assessment of biogas and bioethanol production from cassava cellulosic waste. Waste Biomass Valorization 10: 691-700. https://doi.org/10.1007/s12649-017-0076-x doi: 10.1007/s12649-017-0076-x |
[32] | Anyanwu CN, Ibeto CN, Ezeoha SL, et al. (2015) Sustainability of cassava (Manihot esculenta Crantz) as industrial feedstock, energy and food crop in Nigeria. Renew Energ 81: 745-752. https://doi.org/10.1016/j.renene.2015.03.075 doi: 10.1016/j.renene.2015.03.075 |
[33] | Versino F (2017) Biodegradable composite materials with agronomic uses from tuberous roots [PhD's thesis]. National University of the Plata, Argentina (In Spanish). Available from: http://sedici.unlp.edu.ar/handle/10915/66038. |
[34] | Versino F, García MA (2014) Cassava (Manihot esculenta) starch films reinforced with natural fibrous filler. Ind Crop Prod 58: 305-314. https://doi.org/10.1016/j.indcrop.2014.04.040 doi: 10.1016/j.indcrop.2014.04.040 |
[35] | Mateos-Maces L, Castillo-González F, Chávez SJL, et al. (2016) Managing and use of the agrobiodiversity in the milpa system from southeast of Mexico. Acta Agron 65: 413-421 (In Spanish). https://doi.org/10.15446/acag.v65n4.50984 doi: 10.15446/acag.v65n4.50984 |
[36] | Centurión-Hidalgo D, Espinosa-Moreno J, Cruz-Lázaro E, et al. (2019) Seasonality of vegetables commercialized in Tabasco's public markets. Rev Aliment Contemp Desarro Reg 29: 16 (In Spanish). https://doi.org/10.24836/es.v29i53.629 doi: 10.24836/es.v29i53.629 |
[37] | Meneses MI, Vázquez HA, Rosas GX, et al. (2014) Dry matter and starch content in cassava clones (Manihot esculenta Crantz). Rev Biol Agropecu Tuxpan 26: 271-274 (In Spanish). https://doi.org/10.47808/revistabioagro.v2i1.268 doi: 10.47808/revistabioagro.v2i1.268 |
[38] | Meneses MI, Vázquez HA, Rosas GX, et al. (2014) Collection and ex situ conservation of cassava germplasm in the state of Veracruz. XXVI Forest and Agricultural Scientific-Technological Meeting Tabasco 2014 and III International Symposium on Tropical Food Production, México: Tabasco 426-431 (In Spanish). Available from: https://www.researchgate.net/profile/Jorge-Herrera-19/publication/310828417_XXVI_Reunion_Cientifica_Tecnologica_Forestal_y_Agropecuaria_Tabasco_2014_La_Innovacion_tecnologica_para_la_seguridad_alimentaria_ISBN_978-607-606-212-8/links/583890aa08ae3d91723ddda5/XXVI-Reunion-Cientifica-Tecnologica-Forestal-y-Agropecuaria-Tabasco-2014-La-Innovacion-tecnologica-para-la-seguridad-alimentaria-ISBN-978-607-606-212-8.pdf. |
[39] | García-Sánchez AS, González-Valdivia NA, Arcocha-Gómez E, et al. (2018) Accessions and varieties of cassava (Manihot esculenta Crantz.) in the Yucatan peninsula, Mexico. Rev Cent Grad Investig 33: 30-33 (In Spanish). Available from: http://www.revistadelcentrodegraduados.com/2019/05/accesiones-y-variedades-de-yuca-manihot.html. |
[40] | Support for the Selective Collection of Plant Genetic Resources for Food and Agriculture. Cassava. SNICS (National Seed Inspection and Certification Service), 2020 (In Spanish). Available from: https://www.gob.mx/snics/acciones-y-programas/linea-5-apoyo-a-la-recoleccion-selectiva-de-recursos-fitogeneticos-para-la-alimentacion-y-la-agricultura. |
[41] | Flores-Cruz LA, García-Salazar JA (2016) Benefits of the adoption of improved corn seed in the central region of Puebla. Rev Fitotec Mex 39: 277-283 (In Spanish). https://doi.org/10.35196/rfm.2016.3.277-283 doi: 10.35196/rfm.2016.3.277-283 |
[42] | OCDE/FAO, OCDE-FAO Agricultural Outlook 2019-2028. Paris/Food and Agriculture Organization of the United Nations (FAO), 2019 (In Spanish). Available from: https://www.oecd-ilibrary.org/agriculture-and-food/ocde-fao-perspectivas-agricolas-2019-2028_7b2e8ba3-es. |
[43] | López OV, Viña SZ, Pachas ANA, et al. (2010) Composition and food properties of Pachyrhizus ahipa roots and starch. Int J Food Sci Technol 45: 223-233 (In Spanish). https://doi.org/10.1111/j.1365-2621.2009.02125.x doi: 10.1111/j.1365-2621.2009.02125.x |
[44] | Vargas ENA, Veleva L, Rodríguez CM, et al. (2017) Cassava (Manihot esculenta), alternative for the production of bioplastics, In: Martínez SR, González HRI, Environmental and Chemical Engineering Faced with Environmental Problems in the Mexican Southeast, 1 Ed., Chiapas: University of Sciences and Arts of Chiapas, 159-174 (In Spanish). Available from: https://catalogo.altexto.mx/la-ingenieria-ambiental-y-quimica-ante-los-problemas-ambientales-en-el-sureste-mexicano-ii-7nxlt.html. |
[45] | Yang D, Ying Y (2011) Applications of Raman spectroscopy in agricultural products and food analysis: A review. Appl Spectrosc Rev 46: 539-560. https://doi.org/10.1080/05704928.2011.593216 doi: 10.1080/05704928.2011.593216 |
[46] | Velázquez JR, Zamora-Peredo L (2018) Does a mango ripen from the bone to the skin? Mat Cienc Nanotecnol 1: 38-47 (In Spanish). Available from: https://www.researchgate.net/profile/Luis-Zamora-Peredo/publication/325732721_un_mango_se_madura_desde_el_hueso_hacia_la_cascara/links/5b20683c0f7e9b0e373ef19c/un-mango-se-madura-desde-el-hueso-hacia-la-cascara.pdf. |
[47] | Zamora-Peredo L, Rodríguez-Jimenez R, García GL, et al. (2018) Study of the pericarp of habanero chili (Capsicum chínense Jacq.) by Raman spectroscopy. Chil J Agric Anim Sci 34: 68-74 (In Spanish). https://doi.org/10.4067/S0719-38902018005000103 doi: 10.4067/S0719-38902018005000103 |
[48] | Del Rosario-Arellano JL, Meneses-Márquez I, Leyva-Ovalle OR, et al. (2020) Morphoagronomic and industrial performance of cassava (Manihot esculenta Crantz) germplasm for the production of starch and solid byproducts. AIMS Agr Food 5: 617-634. https://doi.org/10.3934/agrfood.2020.4.617 doi: 10.3934/agrfood.2020.4.617 |
[49] | Edhirej A, Sapuan SM, Jawaid M, et al. (2017) Preparation and characterization of cassava bagasse reinforced thermoplastic cassava starch. Fibers Polym 18: 162-171. https://doi.org/10.1007/s12221-017-6251-7 doi: 10.1007/s12221-017-6251-7 |
[50] | Versino F, García MA (2018) Cassava starch-based reinforced eco-compatible materials with agronomic applications. Matéria 23: 11. https://doi.org/10.1590/s1517-707620180002.0545 doi: 10.1590/s1517-707620180002.0545 |
[51] | Castillo L, López O, López C, et al. (2013) Thermoplastic starch films reinforced with talc nanoparticles. Carbohyd Polym 95: 664-674. https://doi.org/10.1016/j.carbpol.2013.03.026 doi: 10.1016/j.carbpol.2013.03.026 |
[52] | IBM Corp. Released. IBM SPSS Statistics for Windows, Version 25.0. IBM Corp, 2017. Available from: https://www.ibm.com/docs/en/spss-statistics/25.0.0. |
[53] | Oyeyinka SA, Adeloye AA, Olaomo OO, et al. (2020) Effect of fermentation time on physicochemical properties of starch extracted from cassava root. Food Biosci 33: 100485. https://doi.org/10.1016/j.fbio.2019.100485 doi: 10.1016/j.fbio.2019.100485 |
[54] | Tetchi FA, Rolland-Sabaté A, Guessan AGN, et al. (2007) Molecular and physicochemical characterisation of starches from yam, cocoyam, cassava, sweet potato and ginger produced in the Ivory Coast. J Sci Food Agric 87: 2527-2533. https://doi.org/10.1002/jsfa.2928 doi: 10.1002/jsfa.2928 |
[55] | Lebot V (2019). Tropical Root and Tuber Crops: Cassava, Sweet Potato, Yams and Aroids, Wallingford: CABI. https://doi.org/10.1079/9781789243369.0000 |
[56] | Hernández-Medina M, Torruco-Uco JG, Chel-Guerrero L, et al. (2008) Physicochemical characterization of starches from tubers grown in Yucatan, Mexico. Ciênc Tecnol Aliment 28: 718-726 (In Spanish). https://doi.org/10.1590/S0101-20612008000300031 doi: 10.1590/S0101-20612008000300031 |
[57] | Gu B, Yao Q, Li K, et al. (2013) Change in physicochemical traits of cassava roots and starches associated with genotypes and environmental factors. Starch-Starke 65: 253-263. https://doi.org/10.1002/star.201200028 doi: 10.1002/star.201200028 |
[58] | de Oliveira PHGA, Barbosa ACO, Diniz RP, et al. (2018) Morphological variation of starch granules in S1 cassava progenies. Euphytica 214: 14. https://doi.org/10.1007/s10681-018-2175-6 doi: 10.1007/s10681-018-2175-6 |
[59] | Gussem KD, Vandenabeele P, Verbeken A, et al. (2005) Raman spectroscopic study of Lactarius spores (Russulales, Fungi). Spectrochim Acta A 61: 2898-2908. https://doi.org/10.1016/j.saa.2004.10.038 doi: 10.1016/j.saa.2004.10.038 |
[60] | Bernardino-Nicanor A, Acosta-García G, Güemes-Vera N, et al. (2016) Fourier transform infrared and Raman spectroscopic study of the effect of the thermal treatment and extraction methods on the characteristics of ayocote bean starches. J Food Sci Tech 54: 933-943. https://doi.org/10.1007/s13197-016-2370-1 doi: 10.1007/s13197-016-2370-1 |
[61] | Almeida RM, Alves SR, Nascimbem LRLB, et al. (2010) Determination of amylose content in starch using Raman spectroscopy and multivariate calibration analysis. Anal Bioanal Chem 397: 2693-2701. https://doi.org/10.1007/s00216-010-3566-2 doi: 10.1007/s00216-010-3566-2 |
[62] | Pezzotti G, Zhu W, Chikaguchi H, et al. (2021) Raman spectroscopic analysis of polysaccharides in popular Japanese rice cultivars. Food Chem 354: 129434. https://doi.org/10.1016/j.foodchem.2021.129434 doi: 10.1016/j.foodchem.2021.129434 |
[63] | Liu Y, Xu Y, Yan Y, et al. (2015) Application of Raman spectroscopy in structure analysis and crystallinity calculation of corn starch. Starch-Starke 67: 612-619. https://doi.org/10.1002/star.201400246 doi: 10.1002/star.201400246 |
[64] | Chen J, Chen L, Xie F, et al. (2019) Starch, In: Drug Delivery Applications of Starch Biopolymer Derivatives, 1 Ed., Singapore: Springer, 29-40. https://doi.org/10.1007/978-981-13-3657-7_3 |
[65] | Chisenga SM, Workneh TS, Bultosa G, et al. (2019) Proximate composition, cyanide contents, and particle size distribution of cassava flour from cassava varieties in Zambia. AIMS Agr Food 4: 869. https://doi.org/10.3934/agrfood.2019.4.869 doi: 10.3934/agrfood.2019.4.869 |
[66] | Patle S, Lal B (2008) Investigation of the potential of agro-industrial material as low cost substrate for ethanol production by using Candida tropicalis and Zymomonas mobilis. Biomass Bioenergy 32: 596-602. https://doi.org/10.1016/j.biombioe.2007.12.008 doi: 10.1016/j.biombioe.2007.12.008 |
[67] | Zhu F (2015) Composition, structure, physicochemical properties, and modifications of cassava starch. Carbohyd Polym 122: 456-480. https://doi.org/10.1016/j.carbpol.2014.10.063 doi: 10.1016/j.carbpol.2014.10.063 |
[68] | Ayetigbo O, Latif S, Abass A, et al. (2018) Comparing characteristics of root, flour and starch of biofortified yellow-flesh and white-flesh cassava variants, and sustainability considerations: A review. Sustainability 10: 3089. https://doi.org/10.3390/su10093089 doi: 10.3390/su10093089 |
[69] | de Azêvedo LC, Rovani S, Santos JJ, et al. (2020) Study of renewable silica powder influence in the preparation of bioplastics from corn and potato starch. J Polym Environ 29: 1-14. https://doi.org/10.1007/s10924-020-01911-8 doi: 10.1007/s10924-020-01911-8 |
[70] | Ploypetchara T, Gohtani S (2018) Effect of sugar on starch edible film properties: plasticized effect. J Food Sci Technol 55: 3757-3766. https://doi.org/10.1007/s13197-018-3307-7 doi: 10.1007/s13197-018-3307-7 |
[71] | de Carvalho GR, Marques GS, de Matos Jorge LM, et al. (2018) Cassava bagasse as a reinforcement agent in the polymeric blend of biodegradable film. J Appl Polym Sci 136: 1-7. https://doi.org/10.1002/app.47224 doi: 10.1002/app.47224 |
[72] | Versino F, López OV, García MA (2015) Sustainable use of cassava (Manihot esculenta) roots as raw material for biocomposites development. Ind Crop Prod 65: 79-89. https://doi.org/10.1016/j.indcrop.2014.11.054 doi: 10.1016/j.indcrop.2014.11.054 |
[73] | Fazeli M, Keley M, Biazar E (2018). Preparation and characterization of starch-based composite films reinforced by cellulose nanofibers. Int J Biol Macromol 116: 272-280. https://doi.org/10.1016/j.ijbiomac.2018.04.186 doi: 10.1016/j.ijbiomac.2018.04.186 |
[74] | Perotti GF, Auras R, Constantino VRL (2013) Bionanocomposites of cassava starch and synthetic clay. J Carbohyd Chem 32: 483-501. https://doi.org/10.1080/07328303.2013.858726 doi: 10.1080/07328303.2013.858726 |
[75] | Yang J, Ching YC, Chuah CH (2019) Applications of lignocellulosic fibers and lignin in bioplastics: A review. Polymers 11: 751. https://doi.org/10.3390/polym11050751 doi: 10.3390/polym11050751 |
[76] | Rodríguez-Castellanos W, Flores-Ruiz FJ, Martínez-Bustos F, et al. (2015) Nanomechanical properties and thermal stability of recycled cellulose reinforced starch-gelatin polymer composite. J Appl Polym Sci 132: 7. https://doi.org/10.1002/app.41787 doi: 10.1002/app.41787 |
[77] | Rindlav-Westling A, Standing M, Hermansson AM, et al. (1998) Structure, mechanical and barrier properties of amylose and amylopectin films. Carbohyd Polym 36: 217-224. https://doi.org/10.1016/S0144-8617(98)00025-3 doi: 10.1016/S0144-8617(98)00025-3 |
[78] | López OV, García MA, Zaritzky NE (2008) Film forming capacity of chemically modified corn starches. Carbohyd Polym 73: 573-581. https://doi.org/10.1016/j.carbpol.2007.12.023 doi: 10.1016/j.carbpol.2007.12.023 |
[79] | Mukurumbira AR, Mellem JJ, Amonsou EO (2017) Effects of amadumbe starch nanocrystals on the physicochemical properties of starch biocomposite films. Carbohyd Polym 165: 142-148. https://doi.org/10.1016/j.carbpol.2017.02.041 doi: 10.1016/j.carbpol.2017.02.041 |
[80] | Lourdin D, Della VG, Colonna P (1995) Influence of amylose content on starch films and foams. Carbohyd Polym 27: 261-270. https://doi.org/10.1016/0144-8617(95)00071-2 doi: 10.1016/0144-8617(95)00071-2 |
[81] | Mali S, Karam LB, Ramos LP, et al. (2004) Relationships among the composition and physicochemical properties of starches with the characteristics of their films. J Agr Food Chem 52: 7720-7725. https://doi.org/10.1021/jf049225 doi: 10.1021/jf049225 |
[82] | Pereda M, Dufresne A, Aranguren MI, et al. (2014) Polyelectrolyte films based on chitosan/olive oil and reinforced with cellulose nanocrystals. Carbohyd Polym 101: 1018-1026. https://doi.org/10.1016/j.carbpol.2013.10.046 doi: 10.1016/j.carbpol.2013.10.046 |
[83] | Jimenez RM, Amaral-Fonseca M, Fernandez-Lafuente R, et al. (2019) Recovery of starch from cassava bagasse for cyclodextrin production by sequential treatment with α-amylase and cyclodextrin glycosyltransferase. Biocatal Agric Biotechnol 22: 101411. https://doi.org/10.1016/j.bcab.2019.101411 doi: 10.1016/j.bcab.2019.101411 |
[84] | Pason P, Tachaapaikoon C, Panichnumsin P, et al. (2020) One-step biohydrogen production from cassava pulp using novel enrichment of anaerobic thermophilic bacteria community. Biocatal Agric Biotechnol 27: 101658. https://doi.org/10.1016/j.bcab.2020.101658 doi: 10.1016/j.bcab.2020.101658 |
[85] | Cruz G, Rodrigues ALP, da Silva DF, et al. et al. (2020) Physical-chemical characterization and thermal behavior of cassava harvest waste for application in thermochemical processes. J Therm Anal Calorim 143: 3611-3622. https://doi.org/10.1007/s10973-020-09330-6 doi: 10.1007/s10973-020-09330-6 |
[86] | Luchese CL, Benelli P, Spada JC, et al. (2018) Impact of the starch source on the physicochemical properties and biodegradability of different starch-based films. J Appl Polym Sci 135: 1-11. https://doi.org/10.1002/app.46564 doi: 10.1002/app.46564 |
[87] | Fazeli M, Keley M, Biazar E (2018) Preparation and characterization of starch-based composite films reinforced by cellulose nanofibers. Int J Biol Macromol 116: 272-280. https://doi.org/10.1016/j.ijbiomac.2018.04.186 doi: 10.1016/j.ijbiomac.2018.04.186 |
[88] | Teixeira EM, Pasquini D, Curvelo AAS, et al. (2009) Cassava bagasse cellulose nanofibrils reinforced thermoplastic cassava starch. Carbohyd Polym 78: 422-431. https://doi.org/10.1016/j.carbpol.2009.04.034 doi: 10.1016/j.carbpol.2009.04.034 |
[89] | Savadekar NR, Mhaske S T (2012) Synthesis of nano cellulose fibers and effect on thermoplastics starch based films. Carbohyd Polym 89: 146-151. https://doi.org/10.1016/j.carbpol.2012.02.063 doi: 10.1016/j.carbpol.2012.02.063 |
[90] | de Campos A, de Sena NAR, Rodrigues VB, et al. (2017) Bionanocomposites produced from cassava starch and oil palm mesocarp cellulose nanowhiskers. Carbohyd Polym 175: 330-336. https://doi.org/10.1016/j.carbpol.2017.07.080 doi: 10.1016/j.carbpol.2017.07.080 |
[91] | Dufresne A (2018) Cellulose nanomaterials as green nanoreinforcements for polymer nanocomposites. Philos T Roy Soc A 376: 20170040. https://doi.org/10.1098/rsta.2017.0040 doi: 10.1098/rsta.2017.0040 |
[92] | Laaziz SA, Raji M, Hilali E, et al. (2017) Bio-composites based on polylactic acid and argan nut shell: Production and properties. Int J Biol Macromol 104: 30-42. https://doi.org/10.1016/j.ijbiomac.2017.05.184 doi: 10.1016/j.ijbiomac.2017.05.184 |
[93] | Thakur S, Chaudhary J, Sharma B, et al. (2018) Sustainability of bioplastics: Opportunities and challenges. Curr Opin Green Sustain Chem 13: 68-75. https://doi.org/10.1016/j.cogsc.2018.04.013 doi: 10.1016/j.cogsc.2018.04.013 |
[94] | Versino F, López OV, García MA (2019) Exploitation of by-products from cassava and ahipa starch extraction as filler of thermoplastic corn starch. Compos Part B-Eng 182: 8. https://doi.org/10.1016/j.compositesb.2019.107653 doi: 10.1016/j.compositesb.2019.107653 |
[95] | López GJ, Cuarán CJC, Arenas GLV, et al. (2014) Potential uses of banana peel: elaboration of a bioplastic. Rev Colomb Investig Agroind 1: 7-21 (In Spanish). https://doi.org/10.23850/24220582.109 doi: 10.23850/24220582.109 |
[96] | Sanyang ML, Sapuan SM, Jawaid M, et al. (2015) Effect of plasticizer type and concentration on tensile, thermal and barrier properties of biodegradable film based on sugar palm (Arenga pinnata) starch. Polymers 7: 1106-1124. https://doi.org/10.3390/polym7061106 doi: 10.3390/polym7061106 |
[97] | Zanatta ER, Reinehr TO, Awadallak JA, et al. (2016) Kinetic studies of thermal decomposition of sugarcane bagasse and cassava bagasse. J Therm Anal Calorim 125: 437-445 https://doi.org/10.1007/s10973-016-5378-x doi: 10.1007/s10973-016-5378-x |
[98] | Budzianowski WM (2017) High-value low-volume bioproducts coupled to bioenergies with potential to enhance business development of sustainable biorefineries. Renew Sust Energ Rev 70: 793-804. https://doi.org/10.1016/j.rser.2016.11.260 doi: 10.1016/j.rser.2016.11.260 |