Citation: Ebert D. M. Alvares, Johannes Preußner. Assessment of diffusional mobilities in bcc Cu–Sn and bcc Cu–Zn alloys[J]. AIMS Materials Science, 2019, 6(6): 1153-1163. doi: 10.3934/matersci.2019.6.1153
[1] | Mock C, Kölle S, Preussner Y (2017) (Zukunfts-)Chancen der Weißbronzeschichten-eine potentielle Nickelersatzschicht? WOMAG 5: 24-25. DOI: 10.7395/2017/Mock1. |
[2] | Kirkendall TD, Thomassen L, Upthegrove C (1939) Rates of diffusion of copper and zinc in Alpha Brass transactions. AIME 133: 186-203. |
[3] | Preußner J, Weber M, Helm D, et al. (2013) Modellierung der Ausscheidungskinetik und des mechanischen Verhaltens in einer Cu-Ni-Si-Legierung. Metall 11: 517-520. |
[4] | Sudman B, Fries SG, Lukas H (2007) Computational Thermodynamics, 1 Ed., Cambridge University Press. |
[5] | Liu Z, Wang Y (2016) Computational Thermodynamics of Materials, 1 Ed., Cambridge: Cambridge University Press. |
[6] | Thermal-Calc Software-TCCU2: TCS Cu-based Alloys Database. Available from: http://www.thermocalc.com/media/41191/tccu2.pdf. |
[7] | Tang Y, Chen Q, Engström A, et al. (2018) Kinetic simulations of diffusion-controlled phase transformations in Cu-based alloys, In: Zhang LJ, Diffusion Foundations, Zürich: Trans Tech Publications, 15: 1-22. |
[8] | Ågren J (2002) Binary and multicomponent diffusion, In: Kaufmann EN, Characterization of Materials, Willey Online Library. DOI:10.1002/0471266965.com014. |
[9] | Andersson J, Ågren J (1992) Models for numerical treatments of multicomponent diffusion in simple phases. J Appl Phys 72: 1350-1355. doi: 10.1063/1.351745 |
[10] | Kaufman L, Bernstein H (1970) Computer Calculation of Phase Diagrams, New York: Academic Press. |
[11] | Redlich O, Kister A (1948) Algebraic representation of thermodynamic properties and the classification of solutions. Ind Eng Chem 40: 345-348. doi: 10.1021/ie50458a036 |
[12] | Lindsay S (2009) Introduction to Nanoscience, Oxford: Oxford University Press. |
[13] | Darken LS (1948) Diffusion, mobility and their interrelation through free energy in binary metallic systems. Trans Aime 175: 184-201. |
[14] | Neumann G (1987) A model for the calculation of monovacancy and divacancy contributions to the impurity diffusion in noble-metals. Phys Status Solidi B 144: 329-341. doi: 10.1002/pssb.2221440129 |
[15] | John A (1970) Tracer Diffusion Data for Metals, Alloys and Simple Oxides, New York: Springer, 13-26. |
[16] | Dinsdale AT (1991) SGTE data for pure elements. Calphad 15: 317-425. doi: 10.1016/0364-5916(91)90030-N |
[17] | Han JJ, Wang CP, Liu XJ (2013) A modified model to preddict self-diffusion coefficients in metastable fcc, bcc and hcp structures. J Phase Equilib Diffus 34: 17-24. doi: 10.1007/s11669-012-0185-y |
[18] | Wang CP, Luo YS, Lu Y, et al. (2017) Interdiffusion and atomic mobilities in bcc Ti-Ga and Ti-Cu alloys. J Phase Equilib Diff 38: 84-93. doi: 10.1007/s11669-016-0506-7 |
[19] | Miettinen J (2006) Thermodynamic-kinetic model for the simulation of solidification in binary copper alloys and calculation of thermophysical properties. Comp Mat Sci 36: 367-380. doi: 10.1016/j.commatsci.2005.05.004 |
[20] | Yokota M, Nose M, Mitani H (1980) Interdiffusion in ß and γ phases of the Cu-Sn binary alloy system. J Japan Inst Metals 44: 1007-1012. doi: 10.2320/jinstmet1952.44.9_1007 |
[21] | Landergren US, Birchenall CE, Mehk RF (1956) Diffusion and marker movements in beta brass. J of Metals 8: 73-78. |
[22] | Chen SW, Huang YC, Gierlotka W, et al. (2009) Liquidus projection and thermodynamic modeling of Sn-Zn-Cu ternary system. J Alloy Comp 477: 283-290. doi: 10.1016/j.jallcom.2008.10.156 |
[23] | Jantzen T, Spencer P (1998) Thermodynamic assessments of the Cu-Pb-Zn and Cu-Sn-Zn systems. Calphad 22: 417-434. doi: 10.1016/S0364-5916(98)00040-6 |
[24] | Neumann G, Tuijin C (2008) Self-diffusion and Impurity Diffusion in Pure Merals: handbook of Experimental Data, Pergamon: Elsevier. |
[25] | Balluffi R, Resnick R (1955) Diffusion of zinc and copper in Alpha and Beta Brasses. J Metals 7: 1004-1010. |
[26] | Xu HX, Zhang LJ (2017) Reassessment of atomic mobilities in fcc Cu-Ag-Sn system aiming at establishment of an atomic mobility database in Sn-Ag-Cu-In-Sb-Bi-Pb solder alloys. J Electron Mater 46: 2119-2129. doi: 10.1007/s11664-016-5145-6 |