Citation: Sukhwinder K. Bhullar, Harpal S. Buttar. Perspectives on nanofiber dressings for the localized delivery of botanical remedies in wound healing[J]. AIMS Materials Science, 2017, 4(2): 370-382. doi: 10.3934/matersci.2017.2.370
[1] | Chirayil C, Mathew L, Thomas S (2014) Review of recent research in nano cellulose preparation from different lignocellulosic fibers. Rev Adv Mater Sci 37: 20–28. |
[2] | Zhang L, Webster T (2009) Nanotechnology and nanomaterials: promises for improved tissue regeneration. Nano Today 4: 66–80. doi: 10.1016/j.nantod.2008.10.014 |
[3] | Sill TJ, von Recum HA (2008) Electrospinning: Applications in drug delivery and tissue engineering. Biomaterials 29: 1989–2006. doi: 10.1016/j.biomaterials.2008.01.011 |
[4] | Li WJ, Laurencin CT, Caterson EJ, et al. (2002) Electrospun nanofibrous structure: A novel scaffold for tissue engineering. J Biomed Mater Res A 60: 613–621. doi: 10.1002/jbm.10167 |
[5] | Zahedi P, Rezaeian I, Ranaei‐Siadat SO, et al. (2010) A review on wound dressings with an emphasis on electrospun nanofibrous polymeric bandages. Polym Advan Technol 21: 77–95. |
[6] | Harcup JW, Saul PA (1986) A Study of The Effect of Cadexomer Iodine in The Treatment of Venous Leg Ulcers. Br J Clin Pract 40: 360–364. |
[7] | Harding KG, Jones V, Price P (2000) Topical treatment: which dressing to choose. Diabetes Metab Res Rev 16: S47–S50. |
[8] | Kittler S, Greulich C, Diendorf J, et al. (2010) Toxicity of silver nanoparticles increases during storage because of slow dissolution under release of silver ions. Chem Mater 22: 4548–4554. doi: 10.1021/cm100023p |
[9] | Ormiston MC, Seymour MT, Venn GE, et al. (1985) Controlled Trial of Iodosorb in Chronic Venous Ulcers. Br Med J (Clin Res Ed) 291: 308–310. doi: 10.1136/bmj.291.6491.308 |
[10] | Percival SL, Bowler PG, Russell D (2005) Bacterial resistance to silver in wound care. J Hosp Infect 40: 1–7. |
[11] | Nguyen DT, Orgill DP, Murphy GF (2009) The Pathophysiologic Basis for Wound Healing and Cutaneous Regeneration. In: Orgill DP, Blanco C, Biomaterials For Treating Skin Loss, Woodhead Publishing (UK/Europe) & CRC Press (US), Cambridge/Boca Raton, 25–57. |
[12] | Powell HM, Supp DM, Boyce ST (2008) Influence of electrospun collagen on wound contraction of engineered skin substitutes. Biomaterials 29: 834–843. doi: 10.1016/j.biomaterials.2007.10.036 |
[13] | Wound Care Market by Product (Advanced (Foam, Alginate, NPWT, Active), Surgical, Traditional), Wound Type (Chronic (DFU, Pressure Ulcer), Acute (Burn)), End User (Hospital (Inpatient, Outpatient), Long-Term Care, Home Healthcare)-Global Forecast to 2021, 2016. Available from: http://www.marketsandmarkets.com/PressReleases/wound-care.asp. |
[14] | Lu X, Wang C, Wei Y (2009) One-Dimensional Composite Nanomaterials: Synthesis by Electrospinning and Their Applications. Small 5: 2349–2370. doi: 10.1002/smll.200900445 |
[15] | Boland ED, Wnek GE, Simpson DG, et al. (2001) Tailoring Tissue Engineering Scaffolds Using Electrostatic Processing Techniques: A Study of Poly(Glycolic Acid) Electrospinning. J Macromol Sci A 38: 1231–1243. doi: 10.1081/MA-100108380 |
[16] | Khil MS, Cha DI, Kim HY, et al. (2003) Electrospun Nanofibrous Polyurethane Membrane as Wound Dressing. J Biomed Mater Res B 67: 675–679. |
[17] | Duan Y, Jia J, Wang S, et al. (2007) Preparation of antimicrobial poly(γ-caprolactone) electrospun nanofibers containing silver-loaded zirconium phosphate nanoparticles. J Appl Polym Sci 106: 1208–1214. doi: 10.1002/app.26786 |
[18] | Kriegel C, Kit KM, McClements DJ, et al. (2009) Electrospinning of chitosan-poly(ethylene oxide) blend nanofibers in the presence of micellar surfactant solutions. Polymer 50: 189–200. doi: 10.1016/j.polymer.2008.09.041 |
[19] | Au HT, Pham LN, Vu THT, et al. (2012) Fabrication of an antibacterial non-woven mat of a poly(lactic acid)/chitosan blend by electrospinning. Macromol Res 20: 51–58. doi: 10.1007/s13233-012-0010-9 |
[20] | Van der Schueren L, Steyaert I, De Schoenmaker B, et al. (2012) Polycaprolactone/chitosan blend nanofibres electrospun from an acetic acid/formic acid solvent system. Carbohyd Polym 88: 1221–1226. doi: 10.1016/j.carbpol.2012.01.085 |
[21] | Sundaramurthi D, Vasanthan KS, Kuppan P, et al. (2012) Electrospun nanostructured chitosan-poly(vinyl alcohol) scaffolds: a biomimetic extracellular matrix as dermal substitute. Biomed Mater 7: 045005. doi: 10.1088/1748-6041/7/4/045005 |
[22] | Chen JP, Chang GY, Chen JK (2008) Electrospun collagen/chitosan nanofibrous membrane as wound dressing. Colloid Surface A 313: 183–188. |
[23] | Dhandayuthapani B, Krishnan UM, Sethuraman S (2010) Fabrication and characterization of chitosan-gelatin blend nanofibers for skin tissue engineering. J Biomed Mater Res B 94: 264–272. |
[24] | Cai Z, Mo X, Zhang K, et al. (2010) Fabrication of Chitosan/Silk Fibroin Composite Nanofibers for Wound-dressing Applications. Int J Mol Sci 11: 3529–3539. doi: 10.3390/ijms11093529 |
[25] | Wang R, Wang Z, Lin S, et al. (2015) Green fabrication of antibacterial polymer/silver nanoparticle nanohybrids by dual-spinneret electrospinning. RSC Adv 5: 40141–40147. doi: 10.1039/C5RA03288A |
[26] | Zhao R, Li X, Sun B, et al. (2014) Electrospun chitosan/sericin composite nanofibers with antibacterialproperty as potential wound dressings. Int J Biol Macromol 68: 92–97. doi: 10.1016/j.ijbiomac.2014.04.029 |
[27] | Gupta RC (2016) Nutraceuticals: Efficacy, Safety and Toxicity. |
[28] | Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: Chemistry, selfassembly, and applications. Chem Rev 110: 3479–3500. doi: 10.1021/cr900339w |
[29] | Siro I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494. |
[30] | Visakh PM, Thomas S (2010) Preparation of Bionanomaterials and their Polymer Nanocomposites. Waste Biomass Valouri 1: 121–134. doi: 10.1007/s12649-010-9009-7 |
[31] | Klemm D, Heublein B, Fink HP, et al. (2005) Cellulose: Fascinating biopolymer and sustainable raw material. Angew Chem Int Edit 44: 3358–3393. doi: 10.1002/anie.200460587 |
[32] | Suganya S, Senthil Ram T, Lakshmi BS, et al. (2011) Herbal Drug Incorporated Antibacterial Nanofibrous Mat Fabricated by Electrospinning: An Excellent Matrix For Wound Dressings. J Appl Polym Sci 121: 2893–2899. doi: 10.1002/app.33915 |
[33] | Sikareepaisan P, Suksamrarn A, Supaphol P (2008) Electrospun gelatin fiber mats containing a herbal-Centellaasiatica-extract and release characteristic of asiaticoside. Nanotechnology 19: 015102. doi: 10.1088/0957-4484/19/01/015102 |
[34] | Han J, Zhang HT, Zhu LM, et al. (2009) Electrospun biodegradable nanofiber mats for controlled release of herbal medicine. 3rd International Conference on Bioinformatics and Biomedical Engineering. |
[35] | Agnes Mary S, Giri Dev VR (2015) Electrospun herbal nanofibrous wound dressings for skin tissue engineering. J Text I 106: 886–895. doi: 10.1080/00405000.2014.951247 |
[36] | DeMario MD, Ratain MJ (1998) Oral chemotherapy: rationale and future directions. J Clin Oncol 16: 2557–2567. |
[37] | Schneider A, Wang XY, Kaplan DL, et al. (2009) Biofunctionalized electrospun silk mats as a topical bioactive dressing for accelerated wound healing. Acta Biomater 5: 2570–2578. doi: 10.1016/j.actbio.2008.12.013 |
[38] | Gil ES, Panilaitis B, Bellas E, et al. (2013) Functionalized silk biomaterials for wound healing. Adv Healthc Mater 2: 206–217. doi: 10.1002/adhm.201200192 |
[39] | Navone SE, Pascucci L, Dossena M, et al. (2014) Decellularized silk fibroin scaffold primed with adipose mesenchymal stromal cells improves wound healing in diabetic mice. Stem Cell Res Ther 5: 7–17. doi: 10.1186/scrt396 |
[40] | Kshirsagar AY, Vekariya MA, Gupta V, et al. (2015) A Comparative Study of Colostrum Dressing Versus Conventional Dressing in Deep Wounds. J Clin Diagn Res 9: PC01–PC04. |
[41] | Borges AC, Eyholzer C, Duc F, et al. (2011) Nanofibrillated cellulose composite hydrogel for the replacement of the nucleus pulposus. Acta Biomater 7: 3412–3421. doi: 10.1016/j.actbio.2011.05.029 |
[42] | Mathew AP, Oksman K, Pierron D, et al. (2011) Crosslinked fibrous composites based on cellulose nanofibers and collagen with in situ pH induced fibrillation. Cellulose 19: 139–150. |
[43] | Valo H, Arola S, Laaksonen P, et al. (2013) Drug release from nanoparticles embedded in four different nanofibrillar cellulose aerogels. Eur J Pharm Sci 50: 69–77. doi: 10.1016/j.ejps.2013.02.023 |
[44] | Laurén P, Lou YR, Raki M, et al. (2014) Technetium-99 mlabeled nanofibrillar cellulose hydrogel for in vivo drug release. Eur J Pharm Sci 65: 79–88. doi: 10.1016/j.ejps.2014.09.013 |
[45] | Sakai K, Kobayashi Y, Saito T, et al. (2016) Partitioned airs at microscale and nanoscale: thermal diffusivity in ultrahigh porosity solids of nanocellulose. Sci Rep 6: 20434. doi: 10.1038/srep20434 |
[46] | Mertaniemi H, Escobedo-Lucea C, Sanz-Garcia A, et al. (2016) Human stem cell decorated nanocellulose threads for biomedical applications. Biomaterials 82: 208–220. doi: 10.1016/j.biomaterials.2015.12.020 |
[47] | Chang C, Zhang L (2011) Cellulose-based hydrogels: present status and application prospects. Carbohydr Polym 84: 40–53. doi: 10.1016/j.carbpol.2010.12.023 |
[48] | El-Newehy MH, Al-Deyab SS, Kenawy ER, et al. (2011) Nanospider Technology for the Production of Nylon-6 Nanofibers for Biomedical Applications. J Nanomater 2011. |
[49] | Zhang S, Shim WS, Kim J (2009) Design of ultra-fine nonwovens via electrospinning of Nylon 6: spinning parameters and filtration efficiency. Mater Design 30: 3659–3666. doi: 10.1016/j.matdes.2009.02.017 |
[50] | Pedicini A, Farris RJ (2004) Thermally induced color change in electrospun fiber mats. J Polym Sci Pol Phys 42: 752–757. |
[51] | Deitzel JM, Kosik W, McKnight SH, et al. (2001) Electrospinning of polymer nanofibers with specific surface chemistry. Polymer 43: 1025–1029. |
[52] | Nirmala R, Navamathavan R, El-Newehy MH, et al. (2011) Preparation and electrical characterization of polyamide-6/chitosan composite nanofibers via electrospinning. Mater Lett 65: 493–496. doi: 10.1016/j.matlet.2010.10.066 |
[53] | Zachariades AE, Porter RS, Doshi J, et al. (1995) High modulus polymers. A novel electrospinning process. Polym News 20: 206–207. |
[54] | Reneker DH, Yarin AL, Fong H, et al. (2000) Bending instability of electrically charged liquid jets of polymer solutions in Electrospinning. J Appl Phys 87: 4531–4547. doi: 10.1063/1.373532 |
[55] | Fong H, Reneker DH (1999) Elastomeric nanofibers of styren–butadiene–styrene triblock copolymer. J Polym Sci Polym Phys 37: 3488–3493. |
[56] | Teo WE, Ramakrishna S (2006) A Review on Electrospinning Design and Nanofibre Assemblies. Nanotechnology 17: 89–106. |
[57] | Wan LS, Wu J, Xu ZK (2006) Porphyrinated Nanofibers via Copolymerization and Electrospinning. Macromol Rapid Comm 27: 1533–1538. doi: 10.1002/marc.200600381 |
[58] | Wahl DA, Sachlos E, Liu C, et al. (2007) Controlling the processing of collagen hydroxyapatite scaffolds for bone tissue engineering. J Mater Sci-Mater M 18: 201–209. |
[59] | Jayakumar R, Prabaharan M, Kumar PTS, et al. (2011) Biomaterials based on chitin and chitosan in wound dressing applications. Biotechnol Adv 29: 322–337. doi: 10.1016/j.biotechadv.2011.01.005 |
[60] | Hu WW, Yu HN (2013) Co-electrospinning of chitosan/alginate fibers by dual-jet system for modulating material surfaces. Carbohydr Polym 95: 716–727. doi: 10.1016/j.carbpol.2013.02.083 |
[61] | Lyons J, Ko FK (2004) Nanofibers. Encycl Nanosci Nanotech 6: 727–738. |
[62] | Yarin AL, Koombhongse S, Reneker DH (2001) Taylor cone and jetting from liquid droplets in electrospinning of nanofibers. J Appl Phys 90: 4836–4846. doi: 10.1063/1.1408260 |
[63] | Stanger J, Tucker N, Kirwan K, et al. (2009) Effect of charge density on the Taylor cone in electrospinning. Int J Mod Phys B 23: 1956–1961. doi: 10.1142/S0217979209061895 |
[64] | Anton F (1938) Method and apparatus for the production of fibers. US Patent 2116942, 1938-5-10. |
[65] | Ignatious F, Sun L, Lee CP, et al. (2010) Electrospun nanofibers in oral drug delivery. Pharm Res 27: 576–588. doi: 10.1007/s11095-010-0061-6 |
[66] | Verreck G, Chun I, Rosenblatt J, et al. (2003) Incorporation of drugs in an amorphous state into electrospun nanofibers composed of a water-insoluble nonbiodegradable polymer. J Control Release 92: 349–360. doi: 10.1016/S0168-3659(03)00342-0 |
[67] | Ko J, Bhullar SK, Mohtaram NK, et al. (2014) Using mathematical modeling to control topographical properties of poly (ε-caprolactone) melt electrospun scaffolds. J Micromech Microeng 24: 065009. doi: 10.1088/0960-1317/24/6/065009 |
[68] | Denn MM (1980) Continuous Drawing of Liquids to Form Fibers. Annu Rev Fluid Mech 12: 365–387. doi: 10.1146/annurev.fl.12.010180.002053 |
[69] | Feng L, Li S, Li H, et al. (2002) Super-Hydrophobic Surface of Aligned Polyacrylonitrile Nanofibers. Angew Chem 141: 1269–1271. |
[70] | Ramakrishna S, Fujihara K, Teo W, et al. (2005) An introduction to electrospinning and nanofibers, Singapore: World Scientific Publishing Company. |
[71] | Ellison CJ, Phatak A, Giles DW, et al. (2007) Melt blown nanofibers: fiber diameter distributions and onset of fiber breakup. Polymer 48: 3306–3316. doi: 10.1016/j.polymer.2007.04.005 |
[72] | Grafe T, Graham K (2003) Nanofibers and Nanofiber Webs: A New Class of Nonwovens. Nonwoven Technol Rev 12: 51–55. |
[73] | Medeiros ES, Glenn GM, Klamczynski AP, et al. (2009) Solution blow spinning: A new method to produce micro‐and nanofibers from polymer solutions. J Appl Polym Sci 113: 2322–2330. doi: 10.1002/app.30275 |
[74] | Srinivasan S, Chhatre SS, Mabry JM, et al. (2011) Solution spraying of poly(methyl methacrylate) blends to fabricate microtextured, superoleophobic surfaces. Polymer 52: 3209–3218. doi: 10.1016/j.polymer.2011.05.008 |
[75] | Behrens AM, Casey BJ, Sikorski MJ, et al. (2014) In situ deposition of PLGA nanofibers via solution blow spinning. ACS Macro Lett 3: 249–254. doi: 10.1021/mz500049x |