The North Alpine foreland basin (NAFB) in Germany is characterized by various types of sedimentologic features that make it an excellent terrestrial analog of regions affected by high-energy asteroid impact-quakes on Mars. Impact events have shaped all planetary bodies in the inner Solar System over the past >4 Gyr. The well-preserved Ries impact crater (Baden-Württemberg and Bavaria), formed around 14.8 Ma, has recently been linked to an earthquake-produced seismite horizon in Mid-Miocene NAFB sediments that exhibits typical dewatering structures and is associated with sand spikes, seismically produced pin-shaped pseudo-concretions. In this terrestrial setting, the sand spike tails systematically point away from the Ries crater. On its path across Gale Crater, the Mars rover Curiosity seems to have observed a similar seismite horizon in early Hesperian lacustrine deposits including clastic dikes, convolute bedding, and, likely, sand spikes. Their orientation suggests that the nearby Slagnos impact crater might be the seismic source for the formation of those seismites. The Ries impact–seismite deposits can be traced over a distance of more than 200 km from the source crater (northern Switzerland), which makes the NAFB an excellent terrestrial analog for similar deposits and their sedimentologic inventory within Gale Crater's lake deposits on Mars.
Citation: Elmar Buchner, Volker J Sach, Martin Schmieder. Ries impact deposits in the North Alpine Foreland Basin of Germany as a terrestrial analog site for impact-produced seismites and sand spikes on planet Mars[J]. AIMS Geosciences, 2025, 11(1): 68-90. doi: 10.3934/geosci.2025005
The North Alpine foreland basin (NAFB) in Germany is characterized by various types of sedimentologic features that make it an excellent terrestrial analog of regions affected by high-energy asteroid impact-quakes on Mars. Impact events have shaped all planetary bodies in the inner Solar System over the past >4 Gyr. The well-preserved Ries impact crater (Baden-Württemberg and Bavaria), formed around 14.8 Ma, has recently been linked to an earthquake-produced seismite horizon in Mid-Miocene NAFB sediments that exhibits typical dewatering structures and is associated with sand spikes, seismically produced pin-shaped pseudo-concretions. In this terrestrial setting, the sand spike tails systematically point away from the Ries crater. On its path across Gale Crater, the Mars rover Curiosity seems to have observed a similar seismite horizon in early Hesperian lacustrine deposits including clastic dikes, convolute bedding, and, likely, sand spikes. Their orientation suggests that the nearby Slagnos impact crater might be the seismic source for the formation of those seismites. The Ries impact–seismite deposits can be traced over a distance of more than 200 km from the source crater (northern Switzerland), which makes the NAFB an excellent terrestrial analog for similar deposits and their sedimentologic inventory within Gale Crater's lake deposits on Mars.
[1] |
Sach VJ, Buchner E, Schmieder M (2020) Enigmatic earthquake-generated large-scale clastic dyke in the Biberach area (SW Germany). Sediment Geol 398: 105571. https://doi.org/10.1016/j.sedgeo.2019.105571 doi: 10.1016/j.sedgeo.2019.105571
![]() |
[2] |
Buchner E, Sach VJ, Schmieder M (2020) New discovery of two seismite horizons challenges the Ries–Steinheim double‑impact theory. Sci Rep 10: 22143. https://doi.org/10.1038/s41598-020-79032-4 doi: 10.1038/s41598-020-79032-4
![]() |
[3] |
Stöffler D, Artemieva NA, Wünnemann K, et al. (2013) Ries crater and suevite revisited—Observations and modeling. Part Ⅰ: Observations. Meteorit Planet Sci 48: 515–589. https://doi.org/10.1111/maps.12086 doi: 10.1111/maps.12086
![]() |
[4] |
Artemieva NA, Wünnemann K, Krien F, et al. (2013) Ries crater and suevite revisited—Observations and modeling. Part Ⅱ: Modeling. Meteorit Planet Sci 48: 590–627. https://doi.org/10.1111/maps.12085 doi: 10.1111/maps.12085
![]() |
[5] |
Schmieder M, Kennedy T, Jourdan F, et al. (2018) A high-precision 40Ar/39Ar age for the Nördlinger Ries impact crater, Germany, and implications for the accurate dating of terrestrial impact events. Geochim Cosmochim Acta 220: 146–157. https://doi.org/10.1016/j.gca.2017.09.036 doi: 10.1016/j.gca.2017.09.036
![]() |
[6] |
Schmieder M, Kennedy T, Jourdan F (2018) Response to comment on "A high-precision 40Ar/39Ar age for the Nördlinger Ries impact crater, Germany, and implications for the accurate dating of terrestrial impact events" by Schmieder et al. (Geochim. Cosmochim. Acta 220 (2018) 146–157). Geochim Cosmochim Acta 238: 602–605. https://doi.org/10.1016/j.gca.2018.07.025 doi: 10.1016/j.gca.2018.07.025
![]() |
[7] | Sach VJ (1999) Litho- und biostratigraphische Untersuchungen in der Oberen Süßwassermolasse des Landkreises Biberach an der Riß (Oberschwaben). Stuttgarter Beitr Naturk B 276: 1–167. |
[8] | Sach VJ (2014) Strahlenkalke (Shatter-Cones) aus dem Brockhorizont der Oberen Süßwassermolasse in Oberschwaben (Südwestdeutschland)—Fernauswürflinge des Nördlinger-Ries-Impaktes, Pfeil Verlag, München, 1–17. |
[9] | Hofmann B, Hofmann F (1992) An impactite horizon in the upper freshwater molasse in Eastern Switzerland: Distal Ries ejecta. Eclogae Geol Helv 85: 788–789. |
[10] |
Letsch D (2017) Diamictites and soft sediment deformation related to the Ries (ca. 14.9 Ma) meteorite impact: the "Blockhorizont" of Bernhardzell (Eastern Switzerland). Int J Earth Sci 107: 1379–1380. https://doi.org/10.1007/s00531-017-1542-1 doi: 10.1007/s00531-017-1542-1
![]() |
[11] |
Holm-Alwmark S, Alwmark C, Ferrière L, et al. (2021) Shocked quartz in distal ejecta from the Ries impact event (Germany) found at ~ 180 km distance, near Bernhardzell, eastern Switzerland. Sci Rep 11: 7438. https://doi.org/10.1038/s41598-021-86685-2 doi: 10.1038/s41598-021-86685-2
![]() |
[12] |
Buchner E, Sach VJ, Schmieder M (2022) Event- and biostratigraphic evidence for two independent Ries and Steinheim asteroid impacts in the Middle Miocene. Sci Rep 12: 18603. https://doi.org/10.1038/s41598-022-21409-8 doi: 10.1038/s41598-022-21409-8
![]() |
[13] |
Collins G, Melosh HJ, Marcus R (2005) Earth impact effects program: a web-based computer program for calculating the regional environmental consequences of a meteoroid impact on Earth. Meteorit Planet Sci 40: 817–840. https://doi.org/10.1111/j.1945-5100.2005.tb00157.x doi: 10.1111/j.1945-5100.2005.tb00157.x
![]() |
[14] |
Schmieder M, Sach VJ, Buchner E (2021) The Chöpfi pinnacles near Winterthur, Switzerland: Long-distance effects of the Ries impact-earthquake? Int J Earth Sci 111: 145–147. https://doi.org/10.1007/s00531-021-02082-0 doi: 10.1007/s00531-021-02082-0
![]() |
[15] |
Buchner E, Sach VJ, Schmieder M (2021) Sand spikes pinpoint powerful palaeoseismicity. Nat Commun 12: 6731. https://doi.org/10.1038/s41467-021-27061-6 doi: 10.1038/s41467-021-27061-6
![]() |
[16] |
Maurer H, Buchner E (2007) Rekonstruktion fluvialer Systeme der Oberen Süßwassermolasse im Nordalpinen Vorlandbecken SW-Deutschlands. German J Geosci (ZdGG) 158: 249–270. https://doi.org/10.1127/1860-1804/2007/0158-0249 doi: 10.1127/1860-1804/2007/0158-0249
![]() |
[17] | Heider J, Wegele A, Amstutz GC (1976) Beobachtungen über Sandrosen und Zapfensande aus der Süßwassermolasse Südwürttembergs. Der Aufschluß 27: 297–307. |
[18] | Sanborn WB (1976) Oddities of the Mineral World. Van Nostrand Reinhold Company, NY, USA. 142. Available from: http://allanmccollum.net/amcimages/sanborn.html, (last accessed February 19, 2025). |
[19] |
Akçiz SO, Grant Ludwig L, Arrowsmith JR, et al. (2010) Century-long average time intervals between earthquake ruptures of the San Andreas fault in the Carrizo Plain, California. Geology 38: 787–790. https://doi.org/10.1130/G30995.1 doi: 10.1130/G30995.1
![]() |
[20] |
McBride EF, Picard MD, Folk RL (1994) Orientated Concretions, Ionian Coast, Italy: Evidence of Groundwater flow direction. J Sediment Res A64: 535–540. https://doi.org/10.1306/D4267DFC-2B26-11D7-8648000102C1865D doi: 10.1306/D4267DFC-2B26-11D7-8648000102C1865D
![]() |
[21] | McCullough LN, Ritter JB, Zaleha MJ, et al. (2003) Habit, formation, and implications of elongeate, calcite concretions, Victoria, Australia. Department of Geology, Wittenberg University, Ohio, USA. Published Senior Honors Thesis. 25. |
[22] | Grant JA, Wilson SA (2018) Possible Geomorphic and Crater Density Evidence for Late Aqueous Activity in Gale Crater. LPI Contrib. 49th Annual Lunar and Planetary Science Conference. |
[23] |
Metz J, Grotzinger J, Okubo C, et al. (2010) Thin‐skinned deformation of sedimentary rocks in Valles Marineris, Mars. J Geophys Res Planets 115: E11004. https://doi.org/10.1029/2010JE003593 doi: 10.1029/2010JE003593
![]() |
[24] | NASA Mars Science Laboratory, Curiosity Rover, 2024. Available from: https://mars.nasa.gov/msl/mission/science/. |
[25] |
Wray JJ (2013) Gale Crater: The Mars Science Laboratory/Curiosity rover landing site. Int J Astrobiol 12: 25–38. https://doi.org/10.1017/S1473550412000328 doi: 10.1017/S1473550412000328
![]() |
[26] |
Grotzinger JP, Sumner DY, Kah LC, et al. (2014) A habitable fluvio-lacustrine environment at Yellowknife Bay, Gale Crater, Mars. Science 343: 6169. https://doi.org/10.1126/science.1242777 doi: 10.1126/science.1242777
![]() |
[27] |
Grotzinger JP, Gupta S, Malin MC, et al. (2015) Deposition, exhumation, and paleoclimate of an ancient lake deposit, Gale Crater, Mars. Science 350: 6257. https://doi.org/10.1126/science.aac7575 doi: 10.1126/science.aac7575
![]() |
[28] |
Buz J, Ehlmann BL, Pan L, et al. (2017) Mineralogy and stratigraphy of the Gale crater rim, wall, and floor units. J Geophys Res Planets 122: 1090–1118. https://doi.org/10.1002/2016JE005163 doi: 10.1002/2016JE005163
![]() |
[29] |
Schwenzer SP, Abramov O, Allen CC, et al. (2012) Gale Crater: Formation and post-impact hydrous environments. Planet Space Sci 70: 84–95. https://doi.org/10.1016/j.pss.2012.05.014 doi: 10.1016/j.pss.2012.05.014
![]() |
[30] |
Montenat C, Barrier P, Ott d'Estevou P, et al. (2007) Seismites: An attempt at critical analysis and classification. Sediment Geol 196: 5–30. https://doi.org/10.1016/j.sedgeo.2006.08.004 doi: 10.1016/j.sedgeo.2006.08.004
![]() |
[31] | Hargitai H, Levi T (2015) Clastic dikes, Encyclopedia of Planetary Landforms, Hargitai H and Kereszturi A, Eds., Encyclopedia of Planetary Landforms, Springer, NY, USA. |
[32] |
Sleep NH, Olds EP (2018) Remote faulting triggered by strong seismic waves from the Cretaceous-Paleogene asteroid impact. Seismol Res Lett 89: 570–576. https://doi.org/10.1785/0220170223 doi: 10.1785/0220170223
![]() |
[33] |
DePalma RA, Smit J, Burnham DA, et al. (2019) A seismically induced onshore surge deposit at the K-Pg. boundary, North Dakota. PNAS 116: 8190–8199. https://doi.org/10.1073/pnas.1817407116 doi: 10.1073/pnas.1817407116
![]() |
[34] |
Vaniman DT, Bish DL, Ming DW, et al. (2014) Mineralogy of a mudstone at Yellowknife Bay, Gale Crater, Mars. Science 343: 6169. https://doi.org/10.1126/science.1243480 doi: 10.1126/science.1243480
![]() |
[35] |
Ehlmann BL, Buz J (2015) Mineralogy and fluvial history of the watersheds of Gale, Knobel, and Sharp craters: A regional context for MSL Curiosity's exploration. Geophys Res Lett 42: 264–273. https://doi.org/10.1002/2014GL062553 doi: 10.1002/2014GL062553
![]() |
[36] |
Carter J, Viviano-Beck C, Loizeau D, et al. (2015) Orbital detection and implications of akaganéite on Mars. Icarus 253: 296–310. https://doi.org/10.1016/j.icarus.2015.01.020 doi: 10.1016/j.icarus.2015.01.020
![]() |
[37] |
Tohver E, Schmieder M, Lana C, et al. (2018) End-Permian impactogenic earthquake and tsunami deposits in the intracratonic Paraná Basin of Brazil. GSA Bull 130: 1099–1120. https://doi.org/10.1130/B31626.1 doi: 10.1130/B31626.1
![]() |
[38] |
Weatherley DK, Henley RW (2013) Flash vaporization during earthquakes evidenced by gold deposits. Nature Geosci 6: 294–298. https://doi.org/10.1038/ngeo1759 doi: 10.1038/ngeo1759
![]() |
[39] |
Simms JM (2003) Uniquely extensive seismite from the latest Triassic of the United Kingdom: evidence for bolide impact? Geology 31: 557–560. https://doi.org/10.1130/0091-7613(2003)031<0557:UESFTL>2.0.CO;2 doi: 10.1130/0091-7613(2003)031<0557:UESFTL>2.0.CO;2
![]() |
[40] |
Banham SG, Gupta S, Rubin DM, et al. (2018) Ancient Martian aeolian processes and palaeomorphology reconstructed from the Stimson formation on the lower slope of Aeolis Mons, Gale crater, Mars. Sedimentology 65: 993–1042. https://doi.org/10.1111/sed.12469 doi: 10.1111/sed.12469
![]() |
[41] |
Bohacs KM, Carrol AR, Neal JE (2003) Lessons from large lake systems—Thresholds, nonlinearity, and strange attractors. Special Papers-Geological Society of America, 75–90. https://doi.org/10.1130/0-8137-2370-1.75 doi: 10.1130/0-8137-2370-1.75
![]() |
[42] |
Brož P, Oehler D, Mazzini A, et al. (2023) An overview of sedimentary volcanism on Mars. Earth Surf Dynam 11: 633–661. https://doi.org/10.5194/egusphere-2022-1458 doi: 10.5194/egusphere-2022-1458
![]() |
[43] |
Sturm S, Wulf G, Jung D, et al. (2013) The Ries impact, a double-layer rampart crater on Earth. Geology 41: 531–534. https://doi.org/10.1130/G33934.1 doi: 10.1130/G33934.1
![]() |
[44] |
Wilson SA, Morgan AM, Howard AD, et al. (2021) The global distribution of craters with alluvial fans and deltas on Mars. Geophys Res Lett 48: e2020GL091653. https://doi.org/10.1029/2020GL091653 doi: 10.1029/2020GL091653
![]() |
[45] |
Grotzinger JP, Crisp J, Vasavada AR, et al. (2012) Mars Science Laboratory mission and science investigation. Space Sci Rev 170: 5–56. https://doi.org/10.1007/s11214-012-9892-2 doi: 10.1007/s11214-012-9892-2
![]() |