Citation: Asaad M Mahmood, Jim M Dunwell. Evidence for novel epigenetic marks within plants[J]. AIMS Genetics, 2019, 6(4): 70-87. doi: 10.3934/genet.2019.4.70
[1] | C Song, C He (2011) The hunt for 5-hydroxymethylcytosine: The sixth base. Epigenomics 3: 521–523. doi: 10.2217/epi.11.74 |
[2] | Paszkowski J, Whitham SA (2001) Gene silencing and DNA methylation processes. Current Opinion Plant Biol 4: 123–129. doi: 10.1016/S1369-5266(00)00147-3 |
[3] | Bender J (2004) DNA methylation and epigenetics. Annu Rev Plant Biol 55: 41–68. doi: 10.1146/annurev.arplant.55.031903.141641 |
[4] | Holoch D, Moazed D (2015) RNA-mediated epigenetic regulation of gene expression. Nat Rev Genet 16: 71. doi: 10.1038/nrg3863 |
[5] | Zhang X, Yazaki J, Sundaresan A, et al. (2006) Genome-wide high-resolution mapping and functional analysis of DNA methylation in Arabidopsis. Cell 126: 1189–1201. doi: 10.1016/j.cell.2006.08.003 |
[6] | Zhang J, Mei L, Liu R, et al. (2014) Possible involvement of locus-specific methylation on expression regulation of LEAFY homologous gene (CiLFY) during precocious trifoliate orange phase change process. PloS One 9: e88558. doi: 10.1371/journal.pone.0088558 |
[7] | Yang H, Liu Y, Bai F, et al. (2013) Tumor development is associated with decrease of TET gene expression and 5-methylcytosine hydroxylation. Oncogene 32: 663–669. doi: 10.1038/onc.2012.67 |
[8] | Ho-Shing O, Dulac C (2019) Influences of genomic imprinting on brain function and behavior. Current Opinion Behav Sci 25: 66–76. doi: 10.1016/j.cobeha.2018.08.008 |
[9] | Feil R, Berger F (2007) Convergent evolution of genomic imprinting in plants and mammals. Trends Genet 23: 192–199. doi: 10.1016/j.tig.2007.02.004 |
[10] | Klosinska M, Picard CL, Gehring M (2016) Conserved imprinting associated with unique epigenetic signatures in the Arabidopsis genus. Nat Plants 2: 16145. doi: 10.1038/nplants.2016.145 |
[11] | Scott RJ, Spielman M (2004) Epigenetics: Imprinting in plants and mammals-the same but different? Current Biol 14: R201–R203. doi: 10.1016/j.cub.2004.02.022 |
[12] | Feng S, Jacobsen SE (2011) Epigenetic modifications in plants: An evolutionary perspective. Current Opinion Plant Biol 14: 179–186. doi: 10.1016/j.pbi.2010.12.002 |
[13] | Reinders J, Wulff BB, Mirouze M, et al. (2009) Compromised stability of DNA methylation and transposon immobilization in mosaic Arabidopsis epigenomes. Genet Dev 23: 939–950. doi: 10.1101/gad.524609 |
[14] | Zemach A, McDaniel IE, Silva P, et al. (2010) Genome-wide evolutionary analysis of eukaryotic DNA methylation. Science 328: 916–919. doi: 10.1126/science.1186366 |
[15] | Zhang X, Shiu S, Cal A, et al. (2008) Correction: Global analysis of genetic, epigenetic and transcriptional polymorphisms in Arabidopsis thaliana using whole genome tiling arrays. PLoS Genet 4. |
[16] | Cao X, Jacobsen SE (2002) Locus-specific control of asymmetric and CpNpG methylation by the DRM and CMT3 methyltransferase genes. Proc Nat Acad Sci 99: 16491–16498. doi: 10.1073/pnas.162371599 |
[17] | Feng S, Jacobsen SE, Reik W (2010) Epigenetic reprogramming in plant and animal development. Science 330: 622–627. doi: 10.1126/science.1190614 |
[18] | Huang SsC, Ecker JR (2018) Piecing together cis‐regulatory networks: Insights from epigenomics studies in plants. Wiley Interdiscip Rev: Syst Biol Med 10: e1411. |
[19] | Luo C, Hajkova P, Ecker JR (2018) Dynamic DNA methylation: in the right place at the right time. Science 361: 1336–1340. doi: 10.1126/science.aat6806 |
[20] | Rangwala SH, Richards EJ (2004) The value-added genome: Building and maintaining genomic cytosine methylation landscapes. Current Opinion Genet Dev 14: 686–691. doi: 10.1016/j.gde.2004.09.009 |
[21] | He Y, Li B, Li Z, et al. (2011) Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science 333: 1303–1307. doi: 10.1126/science.1210944 |
[22] | Torres MA, Dangl JL (2005) Functions of the respiratory burst oxidase in biotic interactions, abiotic stress and development. Current Opinion Plant Biol 8: 397–403. doi: 10.1016/j.pbi.2005.05.014 |
[23] | Feinberg AP, Koldobskiy MA, Göndör A (2016) Epigenetic modulators, modifiers and mediators in cancer aetiology and progression. Nature Rev Genet 17: 284. doi: 10.1038/nrg.2016.13 |
[24] | Piccolo FM, Fisher AG (2014) Getting rid of DNA methylation. Trends Cell Biol 24: 136–143. doi: 10.1016/j.tcb.2013.09.001 |
[25] | Hardwick JS, Lane AN, Brown T (2018) Epigenetic modifications of cytosine: Biophysical properties, regulation, and function in mammalian DNA. BioEssays 40. |
[26] | Kondo H, Shiraya T, Wada KC, et al. (2010) Induction of flowering by DNA demethylation in Perilla frutescens and Silene armeria: Heritability of 5-azacytidine-induced effects and alteration of the DNA methylation state by photoperiodic conditions. Plant Sci 178: 321–326. doi: 10.1016/j.plantsci.2010.01.012 |
[27] | Marfil CF, Asurmendi S, Masuelli RW (2012) Changes in micro RNA expression in a wild tuber-bearing Solanum species induced by 5-Azacytidine treatment. Plant Cell Rep 31: 1449–1461. doi: 10.1007/s00299-012-1260-x |
[28] | Law JA, Jacobsen SE (2010) Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nature Rev Genet 11: 204. doi: 10.1038/nrg2719 |
[29] | Kohli RM, Zhang Y (2013) TET enzymes, TDG and the dynamics of DNA demethylation. Nature 502: 472. doi: 10.1038/nature12750 |
[30] | Krokan HE, Bjørås M (2013) Base excision repair. Cold Spring Harbor Perspect Biol 5: a012583. |
[31] | Ooi SK, Bestor TH (2008) The colorful history of active DNA demethylation. Cell 133: 1145–1148. doi: 10.1016/j.cell.2008.06.009 |
[32] | Iwan K, Rahimoff R, Kirchner A, et al. (2018) 5-Formylcytosine to cytosine conversion by C–C bond cleavage in vivo. Nature Chem Biol 14: 72. doi: 10.1038/nchembio.2531 |
[33] | Pfaffeneder T, Hackner B, Truß M, et al. (2011) The discovery of 5‐formylcytosine in embryonic stem cell DNA. Angew Chemie Int Ed 50: 7008–7012. doi: 10.1002/anie.201103899 |
[34] | Mohr F, Döhner K, Buske C, et al. (2011) TET genes: New players in DNA demethylation and important determinants for stemness. Exp Hematol 39: 272–281. doi: 10.1016/j.exphem.2010.12.004 |
[35] | Shen L, Zhang Y (2013) 5-Hydroxymethylcytosine: Generation, fate, and genomic distribution. Current Opinion Cell Biol 25: 289–296. doi: 10.1016/j.ceb.2013.02.017 |
[36] | Verrijzer CP, Tjian R (1996) TAFs mediate transcriptional activation and promoter selectivity. Trends Biochem Sci 21: 338–342. doi: 10.1016/0968-0004(96)10044-X |
[37] | Ito S, D'alessio AC, Taranova OV, et al. (2010) Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature 466: 1129. doi: 10.1038/nature09303 |
[38] | Szwagierczak A, Bultmann S, Schmidt CS, et al. (2010) Sensitive enzymatic quantification of 5-hydroxymethylcytosine in genomic DNA. Nucleic Acid Res 38: e181–e181. doi: 10.1093/nar/gkq684 |
[39] | Koh KP, Yabuuchi A, Rao S, et al. (2011) Tet1 and Tet2 regulate 5-hydroxymethylcytosine production and cell lineage specification in mouse embryonic stem cells. Cell Stem Cell 8: 200–213. doi: 10.1016/j.stem.2011.01.008 |
[40] | Zhao H, Chen T (2013) Tet family of 5-methylcytosine dioxygenases in mammalian development. J Human Genet 58: 421. doi: 10.1038/jhg.2013.63 |
[41] | Dunwell JM, Purvis A, Khuri S (2004) Cupins: The most functionally diverse protein superfamily? Phytochemistry 65: 7–17. doi: 10.1016/j.phytochem.2003.08.016 |
[42] | Brooks SC, Fischer RL, Huh JH, et al. (2014) 5-methylcytosine recognition by Arabidopsis thaliana DNA glycosylases DEMETER and DML3. Biochemistry 53: 2525–2532. doi: 10.1021/bi5002294 |
[43] | Dunwell TL, Holland PW (2017) A sister of NANOG regulates genes expressed in pre-implantation human development. Open Biol 7: 170027. doi: 10.1098/rsob.170027 |
[44] | Jin S, Zhang Z, Dunwell TL, et al. (2016) Tet3 reads 5-carboxylcytosine through its CXXC domain and is a potential guardian against neurodegeneration. Cell Rep 14: 493–505. doi: 10.1016/j.celrep.2015.12.044 |
[45] | Wu X, Zhang Y (2017) TET-mediated active DNA demethylation: Mechanism, function and beyond. Nature Rev Genet 18: 517. |
[46] | Koivunen P, Laukka T (2018) The TET enzymes. Cell Mol Life Sci 75: 1339–1348. doi: 10.1007/s00018-017-2721-8 |
[47] | Bhutani N, Brady JJ, Damian M, et al. (2010) Reprogramming towards pluripotency requires AID-dependent DNA demethylation. Nature 463: 1042. doi: 10.1038/nature08752 |
[48] | Jin S, Wu X, Li AX, et al. (2011) Genomic mapping of 5-hydroxymethylcytosine in the human brain. Nucleic Acid Res 39: 5015–5024. doi: 10.1093/nar/gkr120 |
[49] | Ficz G, Branco MR, Seisenberger S, et al. (2011) Dynamic regulation of 5-hydroxymethylcytosine in mouse ES cells and during differentiation. Nature 473: 398. doi: 10.1038/nature10008 |
[50] | Pastor WA, Pape UJ, Huang Y, et al. (2011) Genome-wide mapping of 5-hydroxymethylcytosine in embryonic stem cells. Nature 473: 394. doi: 10.1038/nature10102 |
[51] | Williams K, Christensen J, Helin K (2012) DNA methylation: TET proteins-guardians of CpG islands? EMBO Rep 13: 28–35. |
[52] | Iqbal K, Jin S, Pfeifer GP, et al. (2011) Reprogramming of the paternal genome upon fertilization involves genome-wide oxidation of 5-methylcytosine. Proc Nat Acad Sci 108: 3642–3647. doi: 10.1073/pnas.1014033108 |
[53] | Robertson J, Robertson AB, Klungland A (2011) The presence of 5-hydroxymethylcytosine at the gene promoter and not in the gene body negatively regulates gene expression. Biochem Biophys Res Commun 411: 40–43. doi: 10.1016/j.bbrc.2011.06.077 |
[54] | Taylor SE, Smeriglio P, Dhulipala L, et al. (2014) A global increase in 5‐hydroxymethylcytosine levels marks osteoarthritic chondrocytes. Arthritis Rheumatol 66: 90–100. doi: 10.1002/art.38200 |
[55] | Laird A, Thomson JP, Harrison DJ, et al. (2013) 5-hydroxymethylcytosine profiling as an indicator of cellular state. Epigenomics 5: 655–669. doi: 10.2217/epi.13.69 |
[56] | Pfeifer GP, Xiong W, Hahn MA, et al. (2014) The role of 5-hydroxymethylcytosine in human cancer. Cell Tissue Res 356: 631–641. doi: 10.1007/s00441-014-1896-7 |
[57] | Ruzov A, Tsenkina Y, Serio A, et al. (2011) Lineage-specific distribution of high levels of genomic 5-hydroxymethylcytosine in mammalian development. Cell Res 21: 1332. doi: 10.1038/cr.2011.113 |
[58] | Yao B, Jin P (2014) Cytosine modifications in neurodevelopment and diseases. Cellular Mol Life Sci 71: 405–418. doi: 10.1007/s00018-013-1433-y |
[59] | Mayer JE, Pfeiffer WH, Beyer P (2008) Biofortified crops to alleviate micronutrient malnutrition. Current Opinion Plant Biol 11: 166–170. doi: 10.1016/j.pbi.2008.01.007 |
[60] | Ma DK, Jang M, Guo JU, et al. (2009) Neuronal activity-induced Gadd45b promotes epigenetic DNA demethylation and adult neurogenesis. Science 323: 1074–1077. doi: 10.1126/science.1166859 |
[61] | W Yaish A-LA, Al-Harrasi I, Patankar HV (2018) Genome-wide DNA Methylation analysis in response to salinity in the model plant caliph medic (Medicago truncatula). BMC Genomics 19: 1–17. doi: 10.1186/s12864-017-4368-0 |
[62] | Al Harrasi I A-YR, Yaish MW (2017) Detection of differential DNA methylation under stress conditions using bisulfite sequence analysis. Plant Stress Tolerance Methods in Molecular Biology. New York, NY: Humana Press, 121–137. |
[63] | Gehring M, Henikoff S (2008) DNA methylation and demethylation in Arabidopsis. The Arabidopsis Book/American Society of Plant Biologists 6. |
[64] | Gehring M, Huh JH, Hsieh TF, et al. (2006) DEMETER DNA glycosylase establishes MEDEA polycomb gene self-imprinting by allele-specific demethylation. Cell 124: 495–506. doi: 10.1016/j.cell.2005.12.034 |
[65] | Penterman J, Zilberman D, Huh JH, et al. (2007) DNA demethylation in the Arabidopsis genome. Pro Nat Acad Sci 104: 6752–6757. doi: 10.1073/pnas.0701861104 |
[66] | Lister R, O'Malley RC, Tonti-Filippini J, et al. (2008) Highly integrated single-base resolution maps of the epigenome in Arabidopsis. Cell 133: 523–536. doi: 10.1016/j.cell.2008.03.029 |
[67] | Zhang JZ, Mei L, Liu R, et al. (2014) Possible involvement of locus-specific methylation on expression regulation of leafy homologous gene (CiLFY) during precocious trifoliate orange phase change process. PLoS One 9: e88558. doi: 10.1371/journal.pone.0088558 |
[68] | Gong Z, Zhu JK (2011) Active DNA demethylation by oxidation and repair. Cell Res 21: 1649–1651. doi: 10.1038/cr.2011.140 |
[69] | Jang H, Shin H, Eichman BF, et al. (2014) Excision of 5-hydroxymethylcytosine by DEMETER family DNA glycosylases. Biochem Biophy Res Comm 446: 1067–1072. doi: 10.1016/j.bbrc.2014.03.060 |
[70] | Terragni J, Bitinaite J, Zheng Y, et al. (2012) Biochemical characterization of recombinant beta-glucosyltransferase and analysis of global 5-hydroxymethylcytosine in unique genomes. Biochemistry 51: 1009–1019. doi: 10.1021/bi2014739 |
[71] | Hewitson K, Granatino N, Welford R, et al. (2005) Oxidation by 2-oxoglutarate oxygenases: Non-haem iron systems in catalysis and signalling. Philos Trans R Soc London 363: 807–828. doi: 10.1098/rsta.2004.1540 |
[72] | Hausinger RP (2015) Biochemical diversity of 2-oxoglutarate-dependent oxygenases. 2-Oxoglutarate-dependent oxygenases. Royal Soc Chem, 1–58. |
[73] | Hagel J, Facchini P (2018) Expanding the roles for 2-oxoglutarate-dependent oxygenases in plant metabolism. Natural Prod Rep 35: 721–734. doi: 10.1039/C7NP00060J |
[74] | Cheynier V, Comte G, Davies KM, et al. (2013) Plant phenolics: Recent advances on their biosynthesis, genetics, and ecophysiology. Plant Physiol Biochem 72: 1–20. doi: 10.1016/j.plaphy.2013.05.009 |
[75] | Martens S, Preuß A, Matern U (2010) Multifunctional flavonoid dioxygenases: Flavonol and anthocyanin biosynthesis in Arabidopsis thaliana L. Phytochemistry 71: 1040–1049. doi: 10.1016/j.phytochem.2010.04.016 |
[76] | Barboza L, Effgen S, Alonso-Blanco C, et al. (2013) Arabidopsis semidwarfs evolved from independent mutations in GA20ox1, ortholog to green revolution dwarf alleles in rice and barley. Proc Nat Acad Sci: 201314979. |
[77] | Monna L, Kitazawa N, Yoshino R, et al. (2002) Positional cloning of rice semidwarfing gene, sd-1: Rice "green revolution gene" encodes a mutant enzyme involved in gibberellin synthesis. DNA Res 9: 11–17. doi: 10.1093/dnares/9.1.11 |
[78] | Reagon M, Thurber CS, Olsen KM, et al. (2011) The long and the short of it: SD1 polymorphism and the evolution of growth trait divergence in US weedy rice. Mol Ecol 20: 3743–3756. doi: 10.1111/j.1365-294X.2011.05216.x |
[79] | Kawai Y, Ono E, Mizutani M (2014) Evolution and diversity of the 2–oxoglutarate‐dependent dioxygenase superfamily in plants. Plant J 78: 328–343. doi: 10.1111/tpj.12479 |
[80] | Myllyharju J (2003) Prolyl 4-hydroxylases, the key enzymes of collagen biosynthesis. Matrix Biol 22: 15–24. doi: 10.1016/S0945-053X(03)00006-4 |
[81] | Tiainen P, Myllyharju J, Koivunen P (2005) Characterization of a second Arabidopsis thaliana prolyl 4-hydroxylase with distinct substrate specificity. J Biol Chem 280: 1142–1148. doi: 10.1074/jbc.M411109200 |
[82] | Zdzisińska B, Żurek A, Kandefer-Szerszeń M (2017) Alpha-ketoglutarate as a molecule with pleiotropic activity: Well-known and novel possibilities of therapeutic use. Arch Immunol Ther Exp 65: 21–36. doi: 10.1007/s00005-016-0406-x |
[83] | Vlad F, Spano T, Vlad D, et al. (2007) Arabidopsis prolyl 4‐hydroxylases are differentially expressed in response to hypoxia, anoxia and mechanical wounding. Physiol Plant 130: 471–483. doi: 10.1111/j.1399-3054.2007.00915.x |
[84] | Zhu JK (2009) Active DNA demethylation mediated by DNA glycosylases. Annu Rev Genet 43: 143–166. doi: 10.1146/annurev-genet-102108-134205 |
[85] | Shi DQ, Ali I, Tang J, et al. (2017) New insights into 5hmC DNA modification: Generation, distribution and function. Front Genet 8: 100. doi: 10.3389/fgene.2017.00100 |
[86] | Yao Q, Song CX, He C, et al. (2012) Heterologous expression and purification of Arabidopsis thaliana VIM1 protein: In vitro evidence for its inability to recognize hydroxymethylcytosine, a rare base in Arabidopsis DNA. Protein Expr Purif 83: 104–111. doi: 10.1016/j.pep.2012.03.003 |
[87] | Moricova P, Ondrej V, Navratilova B, et al. (2013) Changes of DNA methylation and hydroxymethylation in plant protoplast cultures. Acta Biochim Pol 60: 33–36. |
[88] | Liu S, Dunwell TL, Pfeifer GP, et al. (2013) Detection of oxidation products of 5-methyl-2'-deoxycytidine in Arabidopsis DNA. PLoS One 8: e84620. doi: 10.1371/journal.pone.0084620 |
[89] | Dunwell JM GG (2011) Detection of 5hmC in Arabidopsis using fluorescent antibody method. |
[90] | Wang XL, Song SH, Wu YS, et al. (2015) Genome-wide mapping of 5-hydroxymethylcytosine in three rice cultivars reveals its preferential localization in transcriptionally silent transposable element genes. J Exp Bot 66: 6651–6663. doi: 10.1093/jxb/erv372 |
[91] | Erdmann RM, Souza AL, Clish CB, et al. (2014) 5-hydroxymethylcytosine is not present in appreciable quantities in Arabidopsis DNA. G3 (Bethesda) 5: 1–8. |
[92] | Golubov A, Kovalchuk I (2017) Analysis of DNA hydroxymethylation using colorimetric assay. Plant Epigenet: Springer, 89–97. |
[93] | Wang X, Guo T, Wang S, et al. (2017) Determination of 5-hydroxymethyl-2′-deoxycytidine in Rice by high-performance liquid chromatography–tandem mass spectrometry with isotope dilution. Anal Lett 50: 2351–2358. doi: 10.1080/00032719.2017.1286668 |
[94] | Huber SM, van Delft P, Mendil L, et al. (2015) Formation and abundance of 5‐hydroxymethylcytosine in RNA. Chembiochem 16: 752–755. doi: 10.1002/cbic.201500013 |
[95] | Tang Y, Xiong J, Jiang H, et al. (2014) Determination of oxidation products of 5-methylcytosine in plants by chemical derivatization coupled with liquid chromatography/tandem mass spectrometry analysis. Anal Chem 86: 7764–7772. doi: 10.1021/ac5016886 |
[96] | Dawlaty MM, Breiling A, Le T, et al. (2013) Combined deficiency of Tet1 and Tet2 causes epigenetic abnormalities but is compatible with postnatal development. Dev Cell 24: 310–323. doi: 10.1016/j.devcel.2012.12.015 |
[97] | Iyer LM, Tahiliani M, Rao A, et al. (2009) Prediction of novel families of enzymes involved in oxidative and other complex modifications of bases in nucleic acids. Cell Cycle 8: 1698–1710. doi: 10.4161/cc.8.11.8580 |
[98] | Aravind L, Anantharaman V, Zhang D, et al. (2012) Gene flow and biological conflict systems in the origin and evolution of eukaryotes. Front Cell Infect Microbiol 2: 89. |
[99] | Hollwey E, Watson M, Meyer P (2016) Expression of the C-terminal domain of mammalian TET3 DNA dioxygenase in Arabidopsis thaliana induces heritable methylation changes at rDNA loci. Adv Biosci Biotechnol 7: 243–250. doi: 10.4236/abb.2016.75023 |
[100] | Hollwey E, Out S, Watson MR, et al. (2017) TET 3‐mediated demethylation in tomato activates expression of a CETS gene that stimulates vegetative growth. Plant Direct 1: e00022. doi: 10.1002/pld3.22 |
[101] | Ji L, Jordan WT, Shi X, et al. (2018) TET-mediated epimutagenesis of the Arabidopsis thaliana methylome. Nature Comm 9: 895. doi: 10.1038/s41467-018-03289-7 |
[102] | Gallego-Bartolomé J, Gardiner J, Liu W, et al. (2018) Targeted DNA demethylation of the Arabidopsis genome using the human TET1 catalytic domain. Proc Nat Acad Sci 115: E2125–E2134. doi: 10.1073/pnas.1716945115 |
[103] | Price J, Antunez-Sanchez J, Hussain N, et al. (2019) Importance of parental genome balance in the generation of novel yet heritable epigenetic and transcriptional states during doubled haploid breeding. BioRxiv: 812347. |
[104] | Thakore PI, Black JB, Hilton IB, et al. (2016) Editing the epigenome: Technologies for programmable transcription and epigenetic modulation. Nature Methods 13: 127–137. doi: 10.1038/nmeth.3733 |
[105] | Dunwell JM (2010) Haploids in flowering plants: Origins and exploitation. Plant Biotechnol J8: 377–424. |
[106] | Kawakatsu T, Ecker JR (2019) Diversity and dynamics of DNA methylation: Epigenomic resources and tools for crop breeding. Breed Sci: 19005. |
[107] | Delatte B, Wang F, Ngoc LV, et al. (2016) Transcriptome-wide distribution and function of RNA hydroxymethylcytosine. Science 351: 282–285. doi: 10.1126/science.aac5253 |
[108] | Frye M, Harada BT, Behm M, et al. (2018) RNA modifications modulate gene expression during development. Science 361: 1346–1349. doi: 10.1126/science.aau1646 |
[109] | Dietzsch J, Feineis D, Höbartner C (2018) Chemoselective labeling and site‐specific mapping of 5‐formylcytosine as a cellular nucleic acid modification. FEBS Letters 592: 2032–2047. doi: 10.1002/1873-3468.13058 |
[110] | Ecsedi S, Rodríguez-Aguilera J, Hernandez-Vargas H (2018) 5-Hydroxymethylcytosine (5hmC), or how to identify your favorite cell. Epigenomes 2: 3. doi: 10.3390/epigenomes2010003 |
[111] | Gabrieli T, Sharim H, Nifker G, et al. (2018) Epigenetic optical mapping of 5-hydroxymethylcytosine in nanochannel arrays. ACS Nano 12: 7148–7158. doi: 10.1021/acsnano.8b03023 |
[112] | Roberts C, Raner G, Isaacs G (2018) High performance liquid chromatography separation of epigenetic cytosine variants. Methods Protocols 1: 10. doi: 10.3390/mps1020010 |
[113] | Shahal T, Koren O, Shefer G, et al. (2018) Hypersensitive quantification of global 5-hydroxymethylcytosine by chemoenzymatic tagging. Analytica Chimica Acta 1038: 87–96. doi: 10.1016/j.aca.2018.08.035 |
[114] | Song CX, Yin S, Ma L, et al. (2017) 5-Hydroxymethylcytosine signatures in cell-free DNA provide information about tumor types and stages. Cell Res 27: 1231. doi: 10.1038/cr.2017.106 |
[115] | Xu Y, Liu S, Li J, et al. (2018) Real-time sensing of TET2-mediated DNA demethylation In Vitro by metal–organic framework-based oxygen sensor for mechanism analysis and stem-cell behavior prediction. Anal Chem 90: 9330–9337. doi: 10.1021/acs.analchem.8b01941 |
[116] | Sedlazeck FJ, Lee H, Darby CA, et al. (2018) Piercing the dark matter: Bioinformatics of long-range sequencing and mapping. Nature Rev Genet 19: 329. doi: 10.1038/s41576-018-0003-4 |
[117] | Karemaker ID, Vermeulen M (2018) Single-cell DNA methylation profiling: Technologies and biological applications. Trends Biotechnol 36: 952–965. doi: 10.1016/j.tibtech.2018.04.002 |
[118] | Jin S, Jiang Y, Qiu R, et al. (2011) 5-Hydroxymethylcytosine is strongly depleted in human cancers but its levels do not correlate with IDH1 mutations. Cancer Res 71: 7360–7365. doi: 10.1158/0008-5472.CAN-11-2023 |
[119] | Dunwell TL, McGuffin LJ, Dunwell JM, et al. (2013) The mysterious presence of a 5-methylcytosine oxidase in the Drosophila genome: Possible explanations. Cell Cycle 12: 3357–3365. doi: 10.4161/cc.26540 |
[120] | Wang F, Minakhina S, Tran H, et al. (2018) Tet protein function during Drosophila development. PloS One 13: e0190367. doi: 10.1371/journal.pone.0190367 |
[121] | Piergiorge RM, de Miranda AB, Guimarães AC, et al. (2017) Functional analogy in human metabolism: Enzymes with different biological roles or functional redundancy? Genome Bioland Evol 9: 1624–1636. doi: 10.1093/gbe/evx119 |
[122] | Omelchenko MV, Galperin MY, Wolf YI, et al. (2010) Non-homologous isofunctional enzymes: A systematic analysis of alternative solutions in enzyme evolution. Biol Direct 5: 31. doi: 10.1186/1745-6150-5-31 |
[123] | Sukharnikov LO, Cantwell BJ, Podar M, et al. (2011) Cellulases: Ambiguous nonhomologous enzymes in a genomic perspective. Trends Biotechnol 29: 473–479. doi: 10.1016/j.tibtech.2011.04.008 |
[124] | Bastard K, Perret A, Mariage A, et al. (2017) Parallel evolution of non-homologous isofunctional enzymes in methionine biosynthesis. Nature Chem Biol 13: 858. doi: 10.1038/nchembio.2397 |