Citation: Harem Othman Smail. The epigenetics of diabetes, obesity, overweight and cardiovascular disease[J]. AIMS Genetics, 2019, 6(3): 36-45. doi: 10.3934/genet.2019.3.36
[1] | Dimitri P, Corradini N, Rossi F, et al. (2005) The paradox of functional heterochromatin. Bioessays 27: 29–41. doi: 10.1002/bies.20158 |
[2] | Muhonen P, Holthofer H (2008) Epigenetic and microRNA-mediated regulation in diabetes. Nephrol Dial Transplant 24: 1088–1096. doi: 10.1093/ndt/gfn728 |
[3] | Non AL, Thayer ZM (2019) Epigenetics and human variation, In: A companion to anthropological genetics, 21: 293–308. |
[4] | Weksberg R, Butcher DT, Cytrynbaum C, et al. (2019) Epigenetics, In: Emery and Rimoin's Principles and Practice of Medical Genetics and Genomics (Seventh Edition), 79–123. |
[5] | American Diabetes Association (2010) Diagnosis and classification of diabetes mellitus, In: Diabetes Care, 33: S62–S69. |
[6] | Bullard KM, Cowie CC, Lessem SE, et al. (2018) Prevalence of diagnosed diabetes in adults by diabetes type-United States, 2016. Morbidity Mortality Wkly Rep 30: 359. |
[7] | National Institutes of Health (2014) National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, 188–210. |
[8] | MacFarlane AJ, Strom A, Scott FW (2009) Epigenetics: Deciphering how environmental factors may modify autoimmune type 1 diabetes. Mamm Genome 1: 9–10. |
[9] | Garvey WT (2019) Clinical Definition of Overweight and Obesity, In: Bariatric Endocrinology, 121–143. |
[10] | Jensen MD, Ryan DH, Hu FB, et al. (2014) 2013 AHA/ACC/TOS guideline for the management of overweight and obesity in adults. J Am Coll Cardiol 63: S102–S138. |
[11] | Ling C, Rönn T (2019) Epigenetics in human obesity and type 2 diabetes. Cell Metab 29: 1028–1044. doi: 10.1016/j.cmet.2019.03.009 |
[12] | Roger VL, Go AS, Lloyd-Jones DM, et al. (2011) Heart disease and stroke statistics-2011 update: A report from the American Heart Association. Circulation 123: e18–209. |
[13] | Andreassi MG, Barale R, Iozzo P, et al. (2011) The association of micronucleus frequency with obesity, diabetes and cardiovascular disease. Mutagenesis 26: 77–83. doi: 10.1093/mutage/geq077 |
[14] | Al-Hasani K, Mathiyalagan P, El-Osta A (2019) Epigenetics, cardiovascular disease, and cellular reprogramming. J Mol Cell Cardiol 128: 129–133. doi: 10.1016/j.yjmcc.2019.01.019 |
[15] | Smith CJ, Ryckman KK (2015) Epigenetic and developmental influences on the risk of obesity, diabetes, and metabolic syndrome. Diabetes Metab Syndr Obes 8: 295–302. |
[16] | Xu L, Natarajan R, Chen Z (2019) Epigenetic risk profile of diabetic kidney disease in high-risk populations. Curr Diabetes Rep 19: 9. doi: 10.1007/s11892-019-1129-2 |
[17] | Keating ST, El‐Osta A (2013) Epigenetic changes in diabetes. Clin Genet 84: 1–10. doi: 10.1111/cge.12121 |
[18] | Jaenisch R, Bird A (2003) Epigenetic regulation of gene expression: How the genome integrates intrinsic and environmental signals. Nat Genet 3: 245–254. |
[19] | Pollin TI (2011) Epigenetics and diabetes risk: Not just for imprinting anymore? Diabetes 60: 1859–1860. doi: 10.2337/db11-0515 |
[20] | Stankov K, Benc D, Draskovic D (2013) Genetic and epigenetic factors in etiology of diabetes mellitus type 1. Pediatrics 132: 1112–1122. doi: 10.1542/peds.2013-1652 |
[21] | Bramswig NC, Kaestner KH (2012) Epigenetics and diabetes treatment: An unrealized promise? Trends Endocrinol Metabol 23: 286–291. doi: 10.1016/j.tem.2012.02.002 |
[22] | Park JH, Stoffers DA, Nicholls RD, et al. (2008) Development of type 2 diabetes following intrauterine growth retardation in rats is associated with progressive epigenetic silencing of Pdx1. J Clin Invest 118: 2316–2324. |
[23] | Kulkarni RN, Jhala US, Winnay JN, et al. (2004) PDX-1 haploinsufficiency limits the compensatory islet hyperplasia that occurs in response to insulin resistance. J Clin Invest 114: 828–836. doi: 10.1172/JCI21845 |
[24] | Pinney SE, Simmons RA (2010) Epigenetic mechanisms in the development of type 2 diabetes. Trends Endocrinol Metabol 21: 223–229. doi: 10.1016/j.tem.2009.10.002 |
[25] | Martínez JA, Milagro FI, Claycombe KJ, et al. (2014) Epigenetics in adipose tissue, obesity, weight loss, and diabetes. Adv Nutr 5: 71–81. doi: 10.3945/an.113.004705 |
[26] | Sommese L, Benincasa G, Schiano C, et al. (2019) Genetic and epigenetic-sensitive regulatory network in immune response: A putative link between HLA-G and diabetes. Expert Review Endocrinol Metabol 14: 233–241. doi: 10.1080/17446651.2019.1620103 |
[27] | Joyce B, Liu H, Wang L, et al. (2019) Abstract P073: A novel epigenetic link between gestational diabetes mellitus and macrosomia. Circulation 139: AP073. |
[28] | Villeneuve LM, Reddy MA, Lanting LL, et al. (2008) Epigenetic histone H3 lysine 9 methylation in metabolic memory and inflammatory phenotype of vascular smooth muscle cells in diabetes. Proc Nat Acad Sci 105: 9047–9052. doi: 10.1073/pnas.0803623105 |
[29] | Miao F, Chen Z, Genuth S, et al. (2014) Evaluating the role of epigenetic histone modifications in the metabolic memory of type 1 diabetes. Diabetes 63: 1748–1762. doi: 10.2337/db13-1251 |
[30] | Barros L, Eichwald T, Solano AF, et al. (2019) Epigenetic modifications induced by exercise: Drug-free intervention to improve cognitive deficits associated with obesity. Physiol Behav 204: 309–323. doi: 10.1016/j.physbeh.2019.03.009 |
[31] | Ramos-Lopez O, Riezu-Boj JI, Milagro FI, et al. (2019) Associations between olfactory pathway gene methylation marks, obesity features and dietary intakes. Genes Nutr 14: 11. doi: 10.1186/s12263-019-0635-9 |
[32] | Xu L, Yeung MH, Yau MY, et al. (2019) Role of histone acetylation and methylation in obesity. Current Pharmacol Rep 5: 196–203. doi: 10.1007/s40495-019-00176-7 |
[33] | Romieu I, Dossus L, Barquera S, et al. (2017) Energy balance and obesity: What are the main drivers? Cancer Causes Control 28: 247–258. doi: 10.1007/s10552-017-0869-z |
[34] | Austin GL, Ogden LG, Hill JO (2011) Trends in carbohydrate, fat, and protein intakes and association with energy intake in normal-weight, overweight, and obese individuals: 1971–2006. Am J Clin Nutr 93: 836–843. doi: 10.3945/ajcn.110.000141 |
[35] | Ou XH, Zhu CC, Sun SC (2019) Effects of obesity and diabetes on the epigenetic modification of mammalian gametes. J Cellul Physiol 234: 7847–7855. doi: 10.1002/jcp.27847 |
[36] | Ayers D, Boughanem H, Macías-González M (2019) Epigenetic influences in the obesity/colorectal cancer axis: A novel theragnostic avenue. J Oncology: 7406078. |
[37] | Duale N, Witczak O, Brunborg G, et al. (2019) Sperm Epigenome in Obesity. Handb Nutr Diet Epigenet: 727–744. |
[38] | Castro R, Rivera I, Struys EA, et al. (2003) Increased homocysteine and S-adenosylhomocysteine concentrations and DNA hypomethylation in vascular disease. Clin Chem 49: 1292–1296. doi: 10.1373/49.8.1292 |
[39] | Stenvinkel P, Karimi M, Johansson S, et al. (2007) Impact of inflammation on epigenetic DNA methylation-a novel risk factor for cardiovascular disease? J Int Med 261: 488–499. doi: 10.1111/j.1365-2796.2007.01777.x |
[40] | Buro-Auriemma LJ, Salit J, Hackett NR, et al. (2013) Cigarette smoking induces small airway epithelial epigenetic changes with corresponding modulation of gene expression. Hum Mol Genet 22: 4726–4738. doi: 10.1093/hmg/ddt326 |
[41] | Ordovás JM, Smith CE (2010) Epigenetics and cardiovascular disease. Nat Rev Cardiol 7: 510. doi: 10.1038/nrcardio.2010.104 |
[42] | Webster AL, Yan MS, Marsden PA, et al. (2013) Epigenetics and cardiovascular disease. Can J Cardiol 29: 46–57. doi: 10.1016/j.cjca.2012.10.023 |
[43] | Shirodkar AV, Marsden PA (2011) Epigenetics in cardiovascular disease. Current Opin Cardiol 26: 209. doi: 10.1097/HCO.0b013e328345986e |
[44] | Sun C, Burgner DP, Ponsonby AL, et al. (2013) Effects of early-life environment and epigenetics on cardiovascular disease risk in children: Highlighting the role of twin studies. Pediatr Res 73: 523. doi: 10.1038/pr.2013.6 |
[45] | Huang RC, Lillycrop KA, Beilin LJ, et al. (2019) Epigenetic age acceleration in adolescence associates with BMI, inflammation and risk score for middle age cardiovascular disease. J Clin Endocrinol Metabol 104: 3012–3024. doi: 10.1210/jc.2018-02076 |
[46] | Elia L, Condorelli G (2019) The involvement of epigenetics in vascular disease development. Inter J Biochem Cell Biol 107: 27–31. doi: 10.1016/j.biocel.2018.12.005 |
[47] | Campos EI, Reinberg D (2009) Histones: Annotating chromatin. Annu Rev Gene 43: 559–599. doi: 10.1146/annurev.genet.032608.103928 |
[48] | Fedorova E, Zink D (2008) Nuclear architecture and gene regulation. BBA -Molecul Cell Res 1783: 2174–2184. |
[49] | Kouzarides T (2007) Chromatin modifications and their function. Cell 128: 693–705. doi: 10.1016/j.cell.2007.02.005 |
[50] | Duan L, Liu C, Hu J, et al. (2018) Epigenetic mechanisms in coronary artery disease: The current state and prospects. Trends Cardiovasc Med 28: 311–319. doi: 10.1016/j.tcm.2017.12.012 |