Research article

Chaotic dynamics analysis and control of fractional-order ESER systems using a high-precision Caputo derivative approach

  • Received: 02 May 2025 Revised: 30 May 2025 Accepted: 06 June 2025 Published: 11 June 2025
  • This paper investigates the chaotic dynamics and control of a fractional-order energy-saving and emission-reduction (ESER) system using a high-precision method. By constructing a four-dimensional fractional-order system, the complex interactions between new energy, carbon emissions, economic growth, and carbon trading volume are studied. A novel high-precision numerical method, based on generating functions, is introduced to analyze the dynamic behaviors of the system at various fractional derivatives and parameters. Numerical simulations find all kinds of dynamic behaviors, including stable, rapid divergence, and chaotic attractors. In this study, we design feedback and adaptive control strategies to achieve chaos synchronization and system stability. The results highlight the effectiveness of the proposed control methods in stabilizing the system and synchronizing drive-response systems, underscoring the pivotal role of fractional-order derivatives in regulating system dynamics.

    Citation: XiongFei Chi, Ting Wang, ZhiYuan Li. Chaotic dynamics analysis and control of fractional-order ESER systems using a high-precision Caputo derivative approach[J]. Electronic Research Archive, 2025, 33(6): 3613-3637. doi: 10.3934/era.2025161

    Related Papers:

  • This paper investigates the chaotic dynamics and control of a fractional-order energy-saving and emission-reduction (ESER) system using a high-precision method. By constructing a four-dimensional fractional-order system, the complex interactions between new energy, carbon emissions, economic growth, and carbon trading volume are studied. A novel high-precision numerical method, based on generating functions, is introduced to analyze the dynamic behaviors of the system at various fractional derivatives and parameters. Numerical simulations find all kinds of dynamic behaviors, including stable, rapid divergence, and chaotic attractors. In this study, we design feedback and adaptive control strategies to achieve chaos synchronization and system stability. The results highlight the effectiveness of the proposed control methods in stabilizing the system and synchronizing drive-response systems, underscoring the pivotal role of fractional-order derivatives in regulating system dynamics.



    加载中


    [1] F. Yu, S. Zhang, D. Su, Y. Wu, Y. M. Gracia, H. Yin, Dynamic analysis and implementation of FPGA for a new 4D fractional-order memristive Hopfield neural network, Fractal Fractional, 9 (2025), 115. https://doi.org/10.3390/fractalfract9020115 doi: 10.3390/fractalfract9020115
    [2] F. Yu, W. Zhang, X. Xiao, W. Yao, S. Cai, J. Zhang, et al., Dynamic analysis and field-programmable gate array implementation of a 5D fractional-order memristive hyperchaotic system with multiple coexisting attractors, Fractal Fractional, 8 (2024), 271. https://doi.org/10.3390/fractalfract8050271 doi: 10.3390/fractalfract8050271
    [3] F. Yu, X. Kong, W. Yao, J. Zhang, S. Cai, H. Lin, et al., Dynamics analysis, synchronization and FPGA implementation of multiscroll Hopfield neural networks with non-polynomial memristor, Chaos Solitons Fractals, 179 (2024), 114440. https://doi.org/10.1016/j.chaos.2023.114440 doi: 10.1016/j.chaos.2023.114440
    [4] Q. Lai, Y. Liu, L. Fortuna, Dynamical analysis and fixed-time synchronization for secure communication of hidden multiscroll memristive chaotic system, IEEE Trans. Circuits Syst. I, 71(10) (2024), 4665–4675. https://doi.org/10.1109/TCSI.2024.3434551
    [5] Q. Lai, Z. J. Chen, Dynamical analysis and finite-time synchronization of grid-scroll memristive chaotic system without equilibrium, Chaos Solitons Fractals, 176 (2023), 114118. https://doi.org/10.1016/j.chaos.2023.114118 doi: 10.1016/j.chaos.2023.114118
    [6] Q. Lai, L. Yang, G. Chen, Two-dimensional discrete memristive oscillatory hyperchaotic maps with diverse dynamics, IEEE Trans. Ind. Electron., 72 (2025), 969–979. https://doi.org/10.1109/TIE.2024.3417974 doi: 10.1109/TIE.2024.3417974
    [7] W. Feng, J. Yang, X. Zhao, Z. Qin, J. Zhang, Z. Zhu, et al., A novel multi-channel image encryption algorithm leveraging pixel reorganization and hyperchaotic maps, Mathematics, 12 (2024), 3917. https://doi.org/10.3390/math12243917 doi: 10.3390/math12243917
    [8] W. Feng, Q. W. Wang, H. Liu, Y. Ren, J. H. Zhang, S. B. Zhang, et al., Exploiting newly designed fractional-order 3D Lorenz chaotic system and 2D discrete polynomial hyper-chaotic map for high-performance multi-image encryption, Fractal Fractional, 7 (2023), 887. https://doi.org/10.3390/fractalfract7120887 doi: 10.3390/fractalfract7120887
    [9] W. Feng, J. Zhang, Y. Chen, Z. T. Qin, Y. S. Zhang, M. Ahmad, et al., Exploiting robust quadratic polynomial hyperchaotic map and pixel fusion strategy for efficient image encryption, Expert Syst. Appl., 246 (2024), 123190. https://doi.org/10.1016/j.eswa.2024.123190 doi: 10.1016/j.eswa.2024.123190
    [10] K. Qian, Y. Xiao, Y. J. Wei, D. Liu, Q. W. Wang, W. Feng, A robust memristor-enhanced polynomial hyper-chaotic map and its multi-channel image encryption application, Micromachines, 14 (2023), 2090. https://doi.org/10.3390/mi14112090 doi: 10.3390/mi14112090
    [11] C. H. Wang, D. W. Luo, Q. L. Deng, G. Yang, Dynamics analysis and FPGA implementation of discrete memristive cellular neural network with heterogeneous activation functions, Chaos Solitons Fractals, 187 (2024), 115471. https://doi.org/10.1016/j.chaos.2024.115471 doi: 10.1016/j.chaos.2024.115471
    [12] H. Che, Y. L. Wang, Z. Y. Li, Novel patterns in a class of fractional reaction-diffusion models with the Riesz fractional derivative, Math. Comput. Simul., 202 (2022), 149–163. https://doi.org/10.1016/j.matcom.2022.05.037 doi: 10.1016/j.matcom.2022.05.037
    [13] C. Han, Y. L. Wang, Z. Y. Li, A high-precision numerical approach to solving space fractional Gray-Scott model, Appl. Math. Lett., 125 (2022), 107759. https://doi.org/10.1016/j.aml.2021.107759 doi: 10.1016/j.aml.2021.107759
    [14] X. H. Wang, H. L. Zhang, Y. L. Wang, Z. Y. Li, Dynamic properties and numerical simulations of the fractional Hastings-Powell model with the Grünwald-Letnikov fractional derivative, Int. J. Bifurcation Chaos, Forthcoming, 2025.
    [15] S. Zhang, H. L. Zhang, Y. L. Wang, Z. Y. Li, Dynamic properties and numerical simulations of a fractional phytoplankton-zooplankton ecological model, Networks Heterog. Media, 20 (2025), 648–669. https://doi.org/10.3934/nhm.2025028 doi: 10.3934/nhm.2025028
    [16] G. C. Fang, L. X. Tian, M. Sun, M. Fu, Analysis and application of a novel three-dimensional energy-saving and emission-reduction dynamic evolution system Energy, 40 (2012), 291–299. https://doi.org/10.1016/j.energy.2012.01.072
    [17] J. Wang, Y. L. Wang, Study on the stability and entropy complexity of an energy-saving and emission-reduction model with two delays, Entropy, 18 (2016), 371. https://doi.org/10.3390/e18100371 doi: 10.3390/e18100371
    [18] G. Fang, L. Lu, L. Tian, Y. He, H. Yin, Research on the influence mechanism of carbon trading on new energy-a case study of ESER system for China, Phys. A, 545 (2020), 123572. https://doi.org/10.1016/j.physa.2019.123572 doi: 10.1016/j.physa.2019.123572
    [19] G. Fang, L. Tian, M. Fu, M. Sun, R. Du, M. Liu, Investigating carbon tax pilot in YRD urban agglomerations-analysis of a novel ESER system with carbon tax constraints and its application, Appl. Energy, 194 (2017), 635–647. https://doi.org/10.1016/j.apenergy.2016.09.022 doi: 10.1016/j.apenergy.2016.09.022
    [20] Z. J. Chen, W. J. Liu, Dynamical behavior of fractional-order energy-saving and emission-reduction system and its discretization, Nat. Resour. Model., 32 (2019), e12203. https://doi.org/10.1111/nrm.12203 doi: 10.1111/nrm.12203
    [21] Z. Y. Li, M. C. Wang, Y. L. Wang, Numerical solutions of variable-coefficient fractional-in-space KdV equation with the Caputo fractional derivative, Fractal Fractional, 6 (2022), 207. https://doi.org/10.3390/fractalfract6040207 doi: 10.3390/fractalfract6040207
    [22] H. Che, Y. L. Wang, Z. Y. Li, Numerical solutions of space fractional variable-coefficient KdV-modified KdV equation by Fourier spectral method, Fractals, 29 (2021), 2150246. https://doi.org/10.1142/S0218348X21502467 doi: 10.1142/S0218348X21502467
    [23] Z. Y. Li, M. C. Wang, Y. L. Wang, Solving a class of variable order nonlinear fractional integral differential equations by using reproducing kernel function, AIMS Math., 7 (2022), 12935–12951. https://doi.org/10.3934/math.2022716 doi: 10.3934/math.2022716
    [24] Y. L. Wang, L. Jia, H. L. Zhang, Numerical solution for a class of space-time fractional equation by the piecewise reproducing kernel method, Int. J. Comput. Math., 96 (2019), 2100–2111. https://doi.org/10.1080/00207160.2018.1544367 doi: 10.1080/00207160.2018.1544367
    [25] J. Ning, Y. L. Wang, Fourier spectral method for solving fractional-in-space variable coefficient KdV-Burgers equation, Indian J. Phys., 98 (2024), 1727–1744. https://doi.org/10.1007/s12648-023-02934-2 doi: 10.1007/s12648-023-02934-2
    [26] X. L. Gao, H. L. Zhang, X. Y. Li, Research on pattern dynamics of a class of predator-prey model with interval biological coefficients for capture, AIMS Math., 9 (2024), 18506–18527. https://doi.org/10.3934/math.2024901 doi: 10.3934/math.2024901
    [27] X. L. Gao, H. L. Zhang, Y. L. Wang, Z. Y. Li, Research on pattern dynamics behavior of a fractional vegetation-water model in arid flat environment, Fractal Fractional, 8 (2024), 264. https://doi.org/10.3390/fractalfract8050264 doi: 10.3390/fractalfract8050264
    [28] X. L. Gao, Z. Y. Li, Y. L. Wang, Chaotic dynamic behavior of a fractional-order financial system with constant inelastic demand, Int. J. Bifurcation Chaos, 34 (2024), 2450111. https://doi.org/10.1142/S0218127424501116 doi: 10.1142/S0218127424501116
    [29] C. P. Li, Z. Wang, The local discontinuous Galerkin finite element methods for Caputo-type partial differential equations: Numerical analysis, Appl. Numer. Math., 140 (2019), 1–22. https://doi.org/10.1016/j.apnum.2019.01.007 doi: 10.1016/j.apnum.2019.01.007
    [30] C. P. Li, Z. Wang, The local discontinuous Galerkin finite element methods for Caputo-type partial differential equations: Mathematical analysis, Appl. Numer. Math., 150 (2020), 587–606. https://doi.org/10.1016/j.apnum.2019.11.007 doi: 10.1016/j.apnum.2019.11.007
    [31] C. P. Li, Z. Wang, Non-uniform L1/discontinuous Galerkin approximation for the time-fractional convection equation with weak regular solution, Math. Comput. Simul., 182 (2021), 838–857. https://doi.org/10.1016/j.matcom.2020.12.007 doi: 10.1016/j.matcom.2020.12.007
    [32] C. P. Li, Z. Wang, Numerical methods for the time fractional convection-diffusion-reaction equation, Numer. Funct. Anal. Optim., 42 (2021), 1115–1153. https://doi.org/10.1080/01630563.2021.1936019 doi: 10.1080/01630563.2021.1936019
    [33] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999. https://doi.org/10.1016/B978-0-12-558840-9.X5000-4
    [34] V. Daftardar-Gejji, Fractional Calculus and Fractional Differential Equations, Springer Singapore, 2019. https://doi.org/10.1007/978-981-13-9227-6
    [35] I. Petráš, Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation, Springer, Heidelberg, 2011. https://doi.org/10.1007/978-3-642-18101-6
    [36] D. Y. Xue, Fractional Calculus and Fractional-Order Control, Science Press, 2018. https://doi.org/10.1007/978-981-10-6064-2
    [37] D. Y. Xue, L. Bai, Numerical algorithms for Caputo fractional-order differential equations, Int. J. Control, 90 (2016), 1201–1211. https://doi.org/10.1080/00207179.2016.1158419 doi: 10.1080/00207179.2016.1158419
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(537) PDF downloads(38) Cited by(1)

Article outline

Figures and Tables

Figures(15)  /  Tables(10)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog