Research article Special Issues

Motives meet SymPy: studying $ \lambda $-ring expressions in Python

  • Published: 15 April 2025
  • We present a new Python package called "motives", a symbolic manipulation package based on SymPy capable of handling and simplifying motivic expressions in the Grothendieck ring of Chow motives and other types of $ \lambda $-rings. The package is able to manipulate and compare arbitrary expressions in $ \lambda $-rings and, in particular, it contains explicit tools for manipulating motives of several types of commonly used moduli schemes and moduli stacks of decorated bundles on curves. We have applied this new tool to advance in the verification of Mozgovoy's conjectural formula for the motive of the moduli space of twisted Higgs bundles, proving that it holds in rank 2 and 3 for any curve of genus up to 18 and any twisting bundle of small degree.

    Citation: Daniel Sanchez, David Alfaya, Jaime Pizarroso. Motives meet SymPy: studying $ \lambda $-ring expressions in Python[J]. Electronic Research Archive, 2025, 33(4): 2118-2147. doi: 10.3934/era.2025093

    Related Papers:

  • We present a new Python package called "motives", a symbolic manipulation package based on SymPy capable of handling and simplifying motivic expressions in the Grothendieck ring of Chow motives and other types of $ \lambda $-rings. The package is able to manipulate and compare arbitrary expressions in $ \lambda $-rings and, in particular, it contains explicit tools for manipulating motives of several types of commonly used moduli schemes and moduli stacks of decorated bundles on curves. We have applied this new tool to advance in the verification of Mozgovoy's conjectural formula for the motive of the moduli space of twisted Higgs bundles, proving that it holds in rank 2 and 3 for any curve of genus up to 18 and any twisting bundle of small degree.



    加载中


    [1] S. del Baño, On the motive of moduli spaces of rank two vector bundles over a curve, Compos. Math., 131 (2002), 1–30. https://doi.org/10.1023/A:1014756205008 doi: 10.1023/A:1014756205008
    [2] K. Behrend, A. Dhillon, On the motivic class of the stack of bundles, Adv. Math., 212 (2007), 617–644. https://doi.org/10.1016/j.aim.2006.11.003 doi: 10.1016/j.aim.2006.11.003
    [3] K. S. Lee, Remarks on motives of moduli spaces of rank 2 vector bundles on curves, preprint, arXiv: 1806.11101. https://doi.org/10.48550/arXiv.1806.11101
    [4] T. L. Gómez, K. S. Lee, Motivic decompositions of moduli spaces of vector bundles on curves, preprint, arXiv: 2007.06067. https://doi.org/10.48550/arXiv.2007.06067
    [5] J. Sánchez, Motives of Moduli Spaces of Pairs and Applications, PhD thesis, Universidad Complutense, Madrid, 2014.
    [6] O. García-Prada, J. Heinloth, A. Schmitt, On the motives of moduli of chains and Higgs bundles, J. Eur. Math. Soc., 16 (2014), 2617–2668. https://doi.org/10.4171/jems/494 doi: 10.4171/jems/494
    [7] S. Mozgovoy, Solutions of the motivic ADHM recursion formula, Int. Math. Res. Not., 2012 (2012), 4218–4244. https://doi.org/10.1093/imrn/rnr187 doi: 10.1093/imrn/rnr187
    [8] D. Alfaya, A. Oliveira, Lie algebroid connections, twisted Higgs bundles and motives of moduli spaces, J. Geom. Phys., 201 (2024), 105195. https://doi.org/10.1016/j.geomphys.2024.105195 doi: 10.1016/j.geomphys.2024.105195
    [9] Á. González-Prieto, Motivic theory of representation varieties via topological quantum field theories, preprint, arXiv: 1810.09714. https://doi.org/10.48550/arXiv.1810.09714
    [10] Á. González-Prieto, Virtual classes of parabolic $SL_2(\mathbb{C})$-character varieties, Adv. Math., 368 (2020), 107148. https://doi.org/10.1016/j.aim.2020.107148 doi: 10.1016/j.aim.2020.107148
    [11] C. Florentino, A. Nozad, A. Zamora, Serre polynomials of $SL_n$- and $PGL_n$-character varieties of free groups, J. Geom. Phys., 161 (2021), 104008. https://doi.org/10.1016/j.geomphys.2020.104008 doi: 10.1016/j.geomphys.2020.104008
    [12] D. Alfaya, Simplification of $\lambda$-ring expressions in the Grothendieck ring of Chow motives, Appl. Algebra Eng. Commun. Comput., 33 (2022), 599–628. https://doi.org/10.1007/s00200-022-00558-3 doi: 10.1007/s00200-022-00558-3
    [13] A. Meurer, C. P. Smith, M. Paprocki, O. Čertík, S. B. Kirpichev, M. Rocklin, et al., Sympy: symbolic computing in python, PeerJ Comput. Sci., 3 (2017), e103, https://doi.org/10.7717/peerj-cs.103. doi: 10.7717/peerj-cs.103
    [14] D. Knutson, $\lambda$-Rings and the Representation Theory of the Symmetric Group, Springer Berlin Heidelberg, Berlin, Heidelberg, 1973, https://doi.org/10.1007/BFb0069217.
    [15] D. Grinberg, $\lambda$-rings: Definitions and basic properties, 2019. Available from: https://www.cip.ifi.lmu.de/grinberg/algebra/lambda.pdf.
    [16] J. Manin, Correspondences, motifs and monoidal transformations, Mat. Sb., 77 (1968), 475–507, https://doi.org/10.1070/SM1968v006n04ABEH001070 doi: 10.1070/SM1968v006n04ABEH001070
    [17] S. del Baño, On the Chow motive of some moduli spaces, J. Reine Angew. Math., 532 (2001), 105–132, https://doi.org/10.1515/crll.2001.019 doi: 10.1515/crll.2001.019
    [18] M. Larsen, V. A. Lunts, Rationality criteria for motivic zeta functions, Compos. Math., 140 (2004), 1537–1560. https://doi.org/10.1112/S0010437X04000764 doi: 10.1112/S0010437X04000764
    [19] F. Heinloth, A note on functional equations for zeta functions with values in Chow motives, Ann. Inst. Fourier, 57 (2007), 1927–1945. https://doi.org/10.5802/aif.2318 doi: 10.5802/aif.2318
    [20] M. Larsen, V. A. Lunts, Motivic measures and stable birational geometry, Moscow Math. J., 3 (2003), 85–95. https://doi.org/10.17323/1609-4514-2003-3-1-85-95 doi: 10.17323/1609-4514-2003-3-1-85-95
    [21] M. Kapranov, The elliptic curve in the S-duality theory and Eisenstein series for Kac-Moody groups, preprint, arXiv: math/0001005. https://doi.org/10.48550/arXiv.math/0001005
    [22] J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge Studies in Advanced Mathematics, Cambridge University Press, 1990, https://doi.org/10.1017/CBO9780511623646
    [23] W. Y. Chuang, D. E. Diaconescu, G. Pan, Wallcrossing and cohomology of the moduli space of Hitchin pairs, Commun. Number Theory Phys., 5 (2011), 1–56, https://doi.org/10.4310/CNTP.2011.v5.n1.a1 doi: 10.4310/CNTP.2011.v5.n1.a1
    [24] D. Bergh, Motivic classes of some classifying stacks, J. London Math. Soc., 93 (2016), 219–243. https://doi.org/10.1112/jlms/jdv059 doi: 10.1112/jlms/jdv059
    [25] A. Dhillon, M. B. Young, The motive of the classifying stack of the orthogonal group, Mich. Math. J., 65 (2016), 189–197, https://doi.org/10.1307/mmj/1457101817 doi: 10.1307/mmj/1457101817
    [26] M. Talpo, A. Vistoli, The motivic class of the classifying stack of the special orthogonal group, Bull. London Math. Soc., 49 (2017), 818–823. https://doi.org/10.1112/blms.12072 doi: 10.1112/blms.12072
    [27] S. Mozgovoy, R. O'Gorman, Counting twisted Higgs bundles, Math. Res. Lett., 29 (2022), 1551–1570. https://doi.org/10.4310/MRL.2022.v29.n5.a11 doi: 10.4310/MRL.2022.v29.n5.a11
    [28] M. Graffeo, S. Monavari, R. Moschetti, A. T. Ricolfi, The motive of the Hilbert scheme of points in all dimensions, preprint, arXiv: 2406.14321. https://doi.org/10.48550/arXiv.2406.14321
    [29] P. Aluffi, M. Marcolli, E. Nascimento, Explicit formulas for the Grothendieck class of $\overline{\mathcal{M}}_{0, n}$, preprint, arXiv: 2406.13095. https://doi.org/10.48550/arXiv.2406.13095
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1521) PDF downloads(55) Cited by(0)

Article outline

Figures and Tables

Figures(4)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog