Review

A review of dynamics analysis of neural networks and applications in creation psychology

  • Received: 15 January 2023 Revised: 07 February 2023 Accepted: 17 February 2023 Published: 08 March 2023
  • The synchronization problem and the dynamics analysis of neural networks have been thoroughly explored, and there have been many interesting results. This paper presents a review of the issues of synchronization problem, the periodic solution and the stability/stabilization with emphasis on the memristive neural networks and reaction-diffusion neural networks. First, this paper introduces the origin and development of neural networks. Then, based on different types of neural networks, some synchronization problems and the design of the controllers are introduced and summarized in detail. Some results of the periodic solution are discussed according to different neural networks, including bi-directional associative memory (BAM) neural networks and cellular neural networks. From the perspective of memristive neural networks and reaction-diffusion neural networks, some results of stability and stabilization are reviewed comprehensively with latest progress. Based on a review of dynamics analysis of neural networks, some applications in creation psychology are also introduced. Finally, the conclusion and the future research directions are provided.

    Citation: Xiangwen Yin. A review of dynamics analysis of neural networks and applications in creation psychology[J]. Electronic Research Archive, 2023, 31(5): 2595-2625. doi: 10.3934/era.2023132

    Related Papers:

  • The synchronization problem and the dynamics analysis of neural networks have been thoroughly explored, and there have been many interesting results. This paper presents a review of the issues of synchronization problem, the periodic solution and the stability/stabilization with emphasis on the memristive neural networks and reaction-diffusion neural networks. First, this paper introduces the origin and development of neural networks. Then, based on different types of neural networks, some synchronization problems and the design of the controllers are introduced and summarized in detail. Some results of the periodic solution are discussed according to different neural networks, including bi-directional associative memory (BAM) neural networks and cellular neural networks. From the perspective of memristive neural networks and reaction-diffusion neural networks, some results of stability and stabilization are reviewed comprehensively with latest progress. Based on a review of dynamics analysis of neural networks, some applications in creation psychology are also introduced. Finally, the conclusion and the future research directions are provided.



    加载中


    [1] G. Rajchakit, P. Agarwal, S. Ramalingam, Stability Analysis of Neural Networks, Springer, 2022. https://doi.org/10.1007/978-981-16-6534-9
    [2] G. Rajchakit, R. Sriraman, N. Boonsatit, P. Hammachukiattikul, C. P. Lim, P. Agarwal, Global exponential stability of clifford-valued neural networks with time-varying delays and impulsive effects, Adv. Differ. Equations, 2021 (2021), 1–21. https://doi.org/10.1186/s13662-021-03367-z doi: 10.1186/s13662-021-03367-z
    [3] N. Boonsatit, G. Rajchakit, R. Sriraman, C. P. Lim, P. Agarwal, Finite-/fixed-time synchronization of delayed clifford-valued recurrent neural networks, Adv. Differ. Equations, 2021 (2021), 1–25. https://doi.org/10.1186/s13662-021-03438-1 doi: 10.1186/s13662-021-03438-1
    [4] W. S. McCulloch, W. Pitts, A logical calculus of the ideas immanent in nervous activity, Bull. Math. Biophys., 5 (1943), 115–133. https://doi.org/10.1007/BF02478259 doi: 10.1007/BF02478259
    [5] D. O. Hebb, The Organization of Behavior: A Neuropsychological Theory, Psychology Press, 2005. https://doi.org/10.4324/9781410612403
    [6] F. Rosenblatt, The perceptron: a probabilistic model for information storage and organization in the brain, Psychol. Rev., 65 (1958), 386–408. https://doi.org/10.1037/h0042519 doi: 10.1037/h0042519
    [7] M. Minsky, S. Papert, An introduction to computational geometry, Cambridge tiass., HIT, 479 (1969), 480.
    [8] J. J. Hopfield, Neurons with graded response have collective computational properties like those of two-state neurons, PNAS, 81 (1984), 3088–3092. https://doi.org/10.1073/pnas.81.10.3088 doi: 10.1073/pnas.81.10.3088
    [9] D. E. Rumelhart, G. E. Hinton, R. J. Williams, Learning representations by back-propagating errors, Nature, 323 (1986), 533–536. https://doi.org/10.1038/323533a0 doi: 10.1038/323533a0
    [10] L. O. Chua, L. Yang, Cellular neural networks: Theory, IEEE Trans. Circuits Syst., 35 (1988), 1257–1272. https://doi.org/10.1109/31.7600 doi: 10.1109/31.7600
    [11] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, Gradient-based learning applied to document recognition, Proc. IEEE, 86 (1998), 2278–2324. https://doi.org/10.1109/5.726791 doi: 10.1109/5.726791
    [12] G. E. Hinton, S. Osindero, Y. W. Teh, A fast learning algorithm for deep belief nets, Neural Comput., 18 (2006), 1527–1554. https://doi.org/10.1162/neco.2006.18.7.1527 doi: 10.1162/neco.2006.18.7.1527
    [13] H. Lin, C. Wang, Y. Sun, T. Wang, Generating-scroll chaotic attractors from a memristor-based magnetized hopfield neural network, IEEE Trans. Circuits Syst. II Express Briefs, 70 (2022), 311–315. https://doi.org/10.1109/TCSII.2022.3212394 doi: 10.1109/TCSII.2022.3212394
    [14] H. Liu, L. Ma, Z. Wang, Y. Liu, F. E. Alsaadi, An overview of stability analysis and state estimation for memristive neural networks, Neurocomputing, 391 (2020), 1–12. https://doi.org/10.1016/j.neucom.2020.01.066 doi: 10.1016/j.neucom.2020.01.066
    [15] Z. Zeng, D. S. Huang, Z. Wang, Pattern memory analysis based on stability theory of cellular neural networks, Appl. Math. Modell., 32 (2008), 112–121. https://doi.org/10.1016/j.apm.2006.11.010 doi: 10.1016/j.apm.2006.11.010
    [16] Z. Wang, S. Joshi, S. Savel'ev, W. Song, R. Midya, Y. Li, et al., Fully memristive neural networks for pattern classification with unsupervised learning, Nat. Electron., 1 (2018), 137–145. https://doi.org/10.1038/s41928-018-0023-2 doi: 10.1038/s41928-018-0023-2
    [17] C. Tsioustas, P. Bousoulas, J. Hadfield, T. P. Chatzinikolaou, I. A. Fyrigos, V. Ntinas, et al., Simulation of low power self-selective memristive neural networks for in situ digital and analogue artificial neural network applications, IEEE Trans. Nanotechnol., 21 (2022), 505–513. https://doi.org/10.1109/TNANO.2022.3205698 doi: 10.1109/TNANO.2022.3205698
    [18] B. Seyfi, A. Rassoli, M. Imeni Markhali, N. Fatouraee, Characterization of the nonlinear biaxial mechanical behavior of human ureter using constitutive modeling and artificial neural networks, J. Appl. Comput. Mech., 8 (2022), 1186–1195. https://doi.org/10.22055/JACM.2020.33703.2272 doi: 10.22055/JACM.2020.33703.2272
    [19] M. Aliasghary, H. Mobki, H. M. Ouakad, Pull-in phenomenon in the electrostatically micro-switch suspended between two conductive plates using the artificial neural network, J. Appl. Comput. Mech., 8 (2022), 1222–1235. https://doi.org/10.22055/JACM.2021.38569.3248 doi: 10.22055/JACM.2021.38569.3248
    [20] H. Guo, J. Zhang, Y. Zhao, H. Zhang, J. Zhao, X. Yang, et al., Accelerated key distribution method for endogenously secure optical communication by synchronized chaotic system based on fiber channel feature, Opt. Fiber Technol., 75 (2023), 103162. https://doi.org/10.1016/j.yofte.2022.103162 doi: 10.1016/j.yofte.2022.103162
    [21] C. Zhou, C. Wang, W. Yao, H. Lin, Observer-based synchronization of memristive neural networks under dos attacks and actuator saturation and its application to image encryption, Appl. Math. Comput., 425 (2022), 127080. https://doi.org/10.1016/j.amc.2022.127080 doi: 10.1016/j.amc.2022.127080
    [22] H. L. Li, C. Hu, L. Zhang, H. Jiang, J. Cao, Complete and finite-time synchronization of fractional-order fuzzy neural networks via nonlinear feedback control, Fuzzy Sets Syst., 443 (2022), 50–69. https://doi.org/10.1016/j.fss.2021.11.004 doi: 10.1016/j.fss.2021.11.004
    [23] W. Chen, Y. Yu, X. Hai, G. Ren, Adaptive quasi-synchronization control of heterogeneous fractional-order coupled neural networks with reaction-diffusion, Appl. Math. Comput., 427 (2022), 127145. https://doi.org/10.1016/j.amc.2022.127145 doi: 10.1016/j.amc.2022.127145
    [24] Y. Shen, X. Liu, Generalized synchronization of delayed complex-valued dynamical networks via hybrid control, Commun. Nonlinear Sci. Numer. Simul., 118 (2023), 107057. https://doi.org/10.1016/j.cnsns.2022.107057 doi: 10.1016/j.cnsns.2022.107057
    [25] A. Abdurahman, M. Abudusaimaiti, H. Jiang, Fixed/predefined-time lag synchronization of complex-valued bam neural networks with stochastic perturbations, Appl. Math. Comput., 444 (2023), 127811. https://doi.org/10.1016/j.amc.2022.127811 doi: 10.1016/j.amc.2022.127811
    [26] H. Pu, F. Li, Fixed-time projective synchronization of delayed memristive neural networks via aperiodically semi-intermittent switching control, ISA Trans., 133 (2023), 302–316. https://doi.org/10.1016/j.isatra.2022.07.022 doi: 10.1016/j.isatra.2022.07.022
    [27] J. Luo, S. Qu, Y. Chen, X. Chen, Z. Xiong, Synchronization, circuit and secure communication implementation of a memristor-based hyperchaotic system using single input controller, Chin. J. Phys., 71 (2021), 403–417. https://doi.org/10.1016/j.cjph.2021.03.009 doi: 10.1016/j.cjph.2021.03.009
    [28] V. L. Freitas, S. Yanchuk, M. Zaks, E. E. Macau, Synchronization-based symmetric circular formations of mobile agents and the generation of chaotic trajectories, Commun. Nonlinear Sci. Numer. Simul., 94 (2021), 105543. https://doi.org/10.1016/j.cnsns.2020.105543 doi: 10.1016/j.cnsns.2020.105543
    [29] J. Xiang, J. Ren, M. Tan, Asymptotical synchronization for complex-valued stochastic switched neural networks under the sampled-data controller via a switching law, Neurocomputing, 514 (2022), 414–425. https://doi.org/10.1016/j.neucom.2022.09.152 doi: 10.1016/j.neucom.2022.09.152
    [30] Z. Dong, X. Wang, X. Zhang, M. Hu, T. N. Dinh, Global exponential synchronization of discrete-time high-order switched neural networks and its application to multi-channel audio encryption, Nonlinear Anal. Hybrid Syst., 47 (2023), 101291. https://doi.org/10.1016/j.nahs.2022.101291 doi: 10.1016/j.nahs.2022.101291
    [31] S. Gong, Z. Guo, S. Wen, Finite-time synchronization of T-S fuzzy memristive neural networks with time delay, Fuzzy Sets Syst., In press. https://doi.org/10.1016/j.fss.2022.10.013
    [32] C. Zhou, C. Wang, Y. Sun, W. Yao, H. Lin, Cluster output synchronization for memristive neural networks, Inf. Sci., 589 (2022), 459–477. https://doi.org/10.1016/j.ins.2021.12.084 doi: 10.1016/j.ins.2021.12.084
    [33] K. Subramanian, P. Muthukumar, S. Lakshmanan, State feedback synchronization control of impulsive neural networks with mixed delays and linear fractional uncertainties, Appl. Math. Comput., 321 (2018), 267–281. https://doi.org/10.1016/j.amc.2017.10.038 doi: 10.1016/j.amc.2017.10.038
    [34] X. Li, W. Zhang, J. Fang, H. Li, Finite-time synchronization of memristive neural networks with discontinuous activation functions and mixed time-varying delays, Neurocomputing, 340 (2019), 99–109. https://doi.org/10.1016/j.neucom.2019.02.051 doi: 10.1016/j.neucom.2019.02.051
    [35] B. Lu, H. Jiang, C. Hu, A. Abdurahman, Spacial sampled-data control for $H_{\infty}$ output synchronization of directed coupled reaction-diffusion neural networks with mixed delays, Neural Networks, 123 (2020), 429–440. https://doi.org/10.1016/j.neunet.2019.12.026 doi: 10.1016/j.neunet.2019.12.026
    [36] W. Tai, Q. Teng, Y. Zhou, J. Zhou, Z. Wang, Chaos synchronization of stochastic reaction-diffusion time-delay neural networks via non-fragile output-feedback control, Appl. Math. Comput., 354 (2019), 115–127. https://doi.org/10.1016/j.amc.2019.02.028 doi: 10.1016/j.amc.2019.02.028
    [37] A. Kazemy, R. Saravanakumar, J. Lam, Master-slave synchronization of neural networks subject to mixed-type communication attacks, Inf. Sci., 560 (2021), 20–34. https://doi.org/10.1016/j.ins.2021.01.063 doi: 10.1016/j.ins.2021.01.063
    [38] W. Zhang, S. Yang, C. Li, W. Zhang, X. Yang, Stochastic exponential synchronization of memristive neural networks with time-varying delays via quantized control, Neural Networks, 104 (2018), 93–103. https://doi.org/10.1016/j.neunet.2018.04.010 doi: 10.1016/j.neunet.2018.04.010
    [39] X. Yang, Z. Cheng, X. Li, T. Ma, Exponential synchronization of coupled neutral-type neural networks with mixed delays via quantized output control, J. Franklin Inst., 356 (2019), 8138–8153. https://doi.org/10.1016/j.jfranklin.2019.07.006 doi: 10.1016/j.jfranklin.2019.07.006
    [40] R. Tang, X. Yang, X. Wan, Y. Zou, Z. Cheng, H. M. Fardoun, Finite-time synchronization of nonidentical bam discontinuous fuzzy neural networks with delays and impulsive effects via non-chattering quantized control, Commun. Nonlinear Sci. Numer. Simul., 78 (2019), 104893. https://doi.org/10.1016/j.cnsns.2019.104893 doi: 10.1016/j.cnsns.2019.104893
    [41] M. Xu, J. L. Wang, P. C. Wei, Synchronization for coupled reaction-diffusion neural networks with and without multiple time-varying delays via pinning-control, Neurocomputing, 227 (2017), 82–91. https://doi.org/10.1016/j.neucom.2016.10.063 doi: 10.1016/j.neucom.2016.10.063
    [42] Y. Li, B. Luo, D. Liu, Z. Yang, Robust synchronization of memristive neural networks with strong mismatch characteristics via pinning control, Neurocomputing, 289 (2018), 144–154. https://doi.org/10.1016/j.neucom.2018.02.006 doi: 10.1016/j.neucom.2018.02.006
    [43] Q. Tang, J. Jian, Exponential synchronization of inertial neural networks with mixed time-varying delays via periodically intermittent control, Neurocomputing, 338 (2019), 181–190. https://doi.org/10.1016/j.neucom.2019.01.096 doi: 10.1016/j.neucom.2019.01.096
    [44] S. Cai, X. Li, P. Zhou, J. Shen, Aperiodic intermittent pinning control for exponential synchronization of memristive neural networks with time-varying delays, Neurocomputing, 332 (2019), 249–258. https://doi.org/10.1016/j.neucom.2018.12.070 doi: 10.1016/j.neucom.2018.12.070
    [45] Y. Yang, Y. He, M. Wu, Intermittent control strategy for synchronization of fractional-order neural networks via piecewise lyapunov function method, J. Franklin Inst., 356 (2019), 4648–4676. https://doi.org/10.1016/j.jfranklin.2018.12.020 doi: 10.1016/j.jfranklin.2018.12.020
    [46] H. A. Tang, S. Duan, X. Hu, L. Wang, Passivity and synchronization of coupled reaction-cdiffusion neural networks with multiple time-varying delays via impulsive control, Neurocomputing, 318 (2018), 30–42. https://doi.org/10.1016/j.neucom.2018.08.005 doi: 10.1016/j.neucom.2018.08.005
    [47] Z. Xu, D. Peng, X. Li, Synchronization of chaotic neural networks with time delay via distributed delayed impulsive control, Neural Networks, 118 (2019), 332–337. https://doi.org/10.1016/j.neunet.2019.07.002 doi: 10.1016/j.neunet.2019.07.002
    [48] M. Li, X. Li, X. Han, J. Qiu, Leader-following synchronization of coupled time-delay neural networks via delayed impulsive control, Neurocomputing, 357 (2019), 101–107. https://doi.org/10.1016/j.neucom.2019.04.063 doi: 10.1016/j.neucom.2019.04.063
    [49] S. Wu, X. Li, Y. Ding, Saturated impulsive control for synchronization of coupled delayed neural networks, Neural Networks, 141 (2021), 261–269. https://doi.org/10.1016/j.neunet.2021.04.012 doi: 10.1016/j.neunet.2021.04.012
    [50] Y. Zhou, H. Zhang, Z. Zeng, Synchronization of memristive neural networks with unknown parameters via event-triggered adaptive control, Neural Networks, 139 (2021), 255–264. https://doi.org/10.1016/j.neunet.2021.02.029 doi: 10.1016/j.neunet.2021.02.029
    [51] A. Kazemy, J. Lam, X. M. Zhang, Event-triggered output feedback synchronization of master-slave neural networks under deception attacks, IEEE Trans. Neural Networks Learn. Syst., 33 (2022), 952–961. https://doi.org/10.1109/TNNLS.2020.3030638 doi: 10.1109/TNNLS.2020.3030638
    [52] X. Li, D. Peng, J. Cao, Lyapunov stability for impulsive systems via event-triggered impulsive control, IEEE Trans. Autom. Control, 65 (2020), 4908–4913. https://doi.org/10.1109/TAC.2020.2964558 doi: 10.1109/TAC.2020.2964558
    [53] M. Wang, X. Li, P. Duan, Event-triggered delayed impulsive control for nonlinear systems with application to complex neural networks, Neural Networks, 150 (2022), 213–221. https://doi.org/10.1016/j.neunet.2022.03.007 doi: 10.1016/j.neunet.2022.03.007
    [54] Y. Fang, T. G. Kincaid, Stability analysis of dynamical neural networks, IEEE Trans. Neural Networks, 7 (1996), 996–1006. https://doi.org/10.1109/72.508941 doi: 10.1109/72.508941
    [55] K. A. Smith, Neural networks for combinatorial optimization: a review of more than a decade of research, Informs J. Comput., 11 (1999), 15–34. https://doi.org/10.1287/ijoc.11.1.15 doi: 10.1287/ijoc.11.1.15
    [56] T. Zhang, J. Zhou, Y. Liao, Exponentially stable periodic oscillation and mittag-leffler stabilization for fractional-order impulsive control neural networks with piecewise caputo derivatives, IEEE Trans. Cybern., 52 (2022), 9670–9683. https://doi.org/10.1109/TCYB.2021.3054946 doi: 10.1109/TCYB.2021.3054946
    [57] E. N. Lorenz, The mechanics of vacillation, J. Atmos. Sci., 20 (1963), 448–465. https://doi.org/10.1175/1520-0469(1963)020 < 0448: TMOV > 2.0.CO; 2
    [58] K. Aihara, T. Takabe, M. Toyoda, Chaotic neural networks, Phys. Lett. A, 144 (1990), 333–340. https://doi.org/10.1016/0375-9601(90)90136-C
    [59] H. Lin, C. Wang, Q. Deng, C. Xu, Z. Deng, C. Zhou, Review on chaotic dynamics of memristive neuron and neural network, Nonlinear Dyn., 106 (2021), 959–973. https://doi.org/10.1007/s11071-021-06853-x doi: 10.1007/s11071-021-06853-x
    [60] T. Yoshizawa, Stability Theory and the Existence of Periodic Solutions and Almost Periodic Solutions, Springer Science & Business Media, 2012.
    [61] Y. Li, X. Wang, Almost periodic solutions in distribution of clifford-valued stochastic recurrent neural networks with time-varying delays, Chaos, Solitons Fractals, 153 (2021), 111536. https://doi.org/10.1016/j.chaos.2021.111536 doi: 10.1016/j.chaos.2021.111536
    [62] B. Kosko, Adaptive bidirectional associative memories, Appl. Opt., 26 (1987), 4947–4960. https://doi.org/10.1364/AO.26.004947 doi: 10.1364/AO.26.004947
    [63] J. Cao, New results concerning exponential stability and periodic solutions of delayed cellular neural networks, Phys. Lett. A, 307 (2003), 136–147. https://doi.org/10.1016/S0375-9601(02)01720-6 doi: 10.1016/S0375-9601(02)01720-6
    [64] J. Cao, J. Wang, Global asymptotic stability of a general class of recurrent neural networks with time-varying delays, IEEE Trans. Circuits Syst. I Fundam. Theory Appl., 50 (2003), 34–44. https://doi.org/10.1109/TCSI.2002.807494 doi: 10.1109/TCSI.2002.807494
    [65] D. Li, Z. Zhang, X. Zhang, Periodic solutions of discrete-time quaternion-valued bam neural networks, Chaos, Solitons Fractals, 138 (2020), 110144. https://doi.org/10.1016/j.chaos.2020.110144 doi: 10.1016/j.chaos.2020.110144
    [66] H. R. Wilson, J. D. Cowan, Excitatory and inhibitory interactions in localized populations of model neurons, Biophys. J., 12 (1972), 1–24. https://doi.org/10.1016/S0006-3495(72)86068-5 doi: 10.1016/S0006-3495(72)86068-5
    [67] R. Decker, V. W. Noonburg, A periodically forced wilson–cowan system with multiple attractors, SIAM J. Math. Anal., 44 (2012), 887–905. https://doi.org/10.1137/110823365 doi: 10.1137/110823365
    [68] B. Pollina, D. Benardete, V. W. Noonburg, A periodically forced wilson–cowan system, SIAM J. Appl. Math., 63 (2003), 1585–1603. https://doi.org/10.1137/S003613990240814X doi: 10.1137/S003613990240814X
    [69] V. Painchaud, N. Doyon, P. Desrosiers, Beyond wilson-cowan dynamics: oscillations and chaos without inhibition, Biol. Cybern., 116 (2022), 527–543. https://doi.org/10.1007/s00422-022-00941-w doi: 10.1007/s00422-022-00941-w
    [70] J. Cao, Global exponential stability and periodic solutions of delayed cellular neural networks, J. Comput. Syst. Sci., 60 (2000), 38–46. https://doi.org/10.1006/jcss.1999.1658 doi: 10.1006/jcss.1999.1658
    [71] S. Arik, V. Tavsanoglu, On the global asymptotic stability of delayed cellular neural networks, IEEE Trans. Circuits Syst. I Fundam. Theory Appl., 47 (2000), 571–574. https://doi.org/10.1109/81.841859 doi: 10.1109/81.841859
    [72] Y. Li, J. Qin, Existence and global exponential stability of periodic solutions for quaternion-valued cellular neural networks with time-varying delays, Neurocomputing, 292 (2018), 91–103. https://doi.org/10.1016/j.neucom.2018.02.077 doi: 10.1016/j.neucom.2018.02.077
    [73] D. Békollè, K. Ezzinbi, S. Fatajou, D. E. H. Danga, F. M. Béssémè, Attractiveness of pseudo almost periodic solutions for delayed cellular neural networks in the context of measure theory, Neurocomputing, 435 (2021), 253–263. https://doi.org/10.1016/j.neucom.2020.12.047 doi: 10.1016/j.neucom.2020.12.047
    [74] A. Chen, L. Huang, J. Cao, Existence and stability of almost periodic solution for bam neural networks with delays, Appl. Math. Comput., 137 (2003), 177–193. https://doi.org/10.1016/S0096-3003(02)00095-4 doi: 10.1016/S0096-3003(02)00095-4
    [75] Q. Jiang, Q. R. Wang, Almost periodic solutions for quaternion-valued neural networks with mixed delays on time scales, Neurocomputing, 439 (2021), 363–373. https://doi.org/10.1016/j.neucom.2020.09.063 doi: 10.1016/j.neucom.2020.09.063
    [76] L. Pan, J. Cao, Anti-periodic solution for delayed cellular neural networks with impulsive effects, Nonlinear Anal. Real World Appl., 12 (2011), 3014–3027. https://doi.org/10.1016/j.nonrwa.2011.05.002 doi: 10.1016/j.nonrwa.2011.05.002
    [77] C. Ou, Anti-periodic solutions for high-order hopfield neural networks, Comput. Math. Appl., 56 (2008), 1838–1844. https://doi.org/10.1016/j.camwa.2008.04.029 doi: 10.1016/j.camwa.2008.04.029
    [78] L. Chua, Memristor-the missing circuit element, IEEE Trans. Circuit Theory, 18 (1971), 507–519. https://doi.org/10.1109/TCT.1971.1083337 doi: 10.1109/TCT.1971.1083337
    [79] L. S. Zhang, Y. C. Jin, Y. D. Song, An overview of dynamics analysis and control of memristive neural networks with delays, Acta Autom. Sin., 47 (2021), 765–779.
    [80] M. Liao, C. Wang, Y. Sun, H. Lin, C. Xu, Memristor-based affective associative memory neural network circuit with emotional gradual processes, Neural Comput. Appl., 34 (2022), 13667–13682. https://doi.org/10.1007/s00521-022-07170-z doi: 10.1007/s00521-022-07170-z
    [81] Z. Deng, C. Wang, H. Lin, Y. Sun, A memristive spiking neural network circuit with selective supervised attention algorithm, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst., Early Access, 2022. https://doi.org/10.1109/TCAD.2022.3228896
    [82] H. Lin, C. Wang, C. Xu, X. Zhang, H. H. Iu, A memristive synapse control method to generate diversified multi-structure chaotic attractors, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst., 42 (2023), 942–955. https://doi.org/10.1109/TCAD.2022.3186516 doi: 10.1109/TCAD.2022.3186516
    [83] H. Lin, C. Wang, L. Cui, Y. Sun, X. Zhang, W. Yao, Hyperchaotic memristive ring neural network and application in medical image encryption, Nonlinear Dyn., 110 (2022), 841–855. https://doi.org/10.1007/s11071-022-07630-0 doi: 10.1007/s11071-022-07630-0
    [84] Z. Wen, C. Wang, Q. Deng, H. Lin, Regulating memristive neuronal dynamical properties via excitatory or inhibitory magnetic field coupling, Nonlinear Dyn., 110 (2022), 1–13. https://doi.org/10.1007/s11071-022-07813-9 doi: 10.1007/s11071-022-07813-9
    [85] Z. Guo, J. Wang, Z. Yan, Attractivity analysis of memristor-based cellular neural networks with time-varying delays, IEEE Trans. Neural Networks Learn. Syst., 25 (2013), 704–717. https://doi.org/10.1109/TNNLS.2013.2280556 doi: 10.1109/TNNLS.2013.2280556
    [86] L. Wang, Y. Shen, Finite-time stabilizability and instabilizability of delayed memristive neural networks with nonlinear discontinuous controller, IEEE Trans. Neural Networks Learn. Syst., 26 (2015), 2914–2924. https://doi.org/10.1109/TNNLS.2015.2460239 doi: 10.1109/TNNLS.2015.2460239
    [87] A. Wu, Z. Zeng, Algebraical criteria of stability for delayed memristive neural networks, Adv. Differ. Equations, 2015 (2015), 1–12. https://doi.org/10.1186/s13662-015-0449-z doi: 10.1186/s13662-015-0449-z
    [88] J. P. Aubin, A. Cellina, Differential Inclusions: Set-valued Maps and Viability Theory, Springer Science & Business Media, 2012.
    [89] A. F. Filippov, Differential Equations with Discontinuous Righthand Sides: Control Systems, Springer Science & Business Media, 2013.
    [90] J. Hu, J. Wang, Global uniform asymptotic stability of memristor-based recurrent neural networks with time delays, in The 2010 International Joint Conference on Neural Networks (IJCNN), IEEE, (2010), 1–8. https://doi.org/10.1109/IJCNN.2010.5596359
    [91] S. Wen, Z. Zeng, T. Huang, Exponential stability analysis of memristor-based recurrent neural networks with time-varying delays, Neurocomputing, 97 (2012), 233–240. https://doi.org/10.1016/j.neucom.2012.06.014 doi: 10.1016/j.neucom.2012.06.014
    [92] K. Mathiyalagan, R. Anbuvithya, R. Sakthivel, J. H. Park, P. Prakash, Reliable stabilization for memristor-based recurrent neural networks with time-varying delays, Neurocomputing, 153 (2015), 140–147. https://doi.org/10.1016/j.neucom.2014.11.043 doi: 10.1016/j.neucom.2014.11.043
    [93] G. Zhang, Y. Shen, Q. Yin, J. Sun, Global exponential periodicity and stability of a class of memristor-based recurrent neural networks with multiple delays, Inf. Sci., 232 (2013), 386–396. https://doi.org/10.1016/j.ins.2012.11.023 doi: 10.1016/j.ins.2012.11.023
    [94] A. Wu, Z. Zeng, Global mittag–leffler stabilization of fractional-order memristive neural networks, IEEE Trans. Neural Networks Learn. Syst., 28 (2015), 206–217. https://doi.org/10.1109/TNNLS.2015.2506738 doi: 10.1109/TNNLS.2015.2506738
    [95] L. Chen, J. Cao, R. Wu, J. T. Machado, A. M. Lopes, H. Yang, Stability and synchronization of fractional-order memristive neural networks with multiple delays, Neural Networks, 94 (2017), 76–85. https://doi.org/10.1016/j.neunet.2017.06.012 doi: 10.1016/j.neunet.2017.06.012
    [96] J. Chen, Z. Zeng, P. Jiang, On the periodic dynamics of memristor-based neural networks with time-varying delays, Inf. Sci., 279 (2014), 358–373. https://doi.org/10.1016/j.ins.2014.03.124 doi: 10.1016/j.ins.2014.03.124
    [97] J. Zhao, Exponential stabilization of memristor-based neural networks with unbounded time-varying delays, Sci. China Inf. Sci., 64 (2021), 1–3. https://doi.org/10.1007/s11432-018-9817-4 doi: 10.1007/s11432-018-9817-4
    [98] Z. Zhang, X. Liu, D. Zhou, C. Lin, J. Chen, H. Wang, Finite-time stabilizability and instabilizability for complex-valued memristive neural networks with time delays, IEEE Trans. Syst. Man Cybern.: Syst., 48 (2017), 2371–2382. https://doi.org/10.1109/TSMC.2017.2754508 doi: 10.1109/TSMC.2017.2754508
    [99] M. Syed Ali, G. Narayanan, Z. Orman, V. Shekher, S. Arik, Finite time stability analysis of fractional-order complex-valued memristive neural networks with proportional delays, Neural Process. Lett., 51 (2020), 407–426. https://doi.org/10.1007/s11063-019-10097-7 doi: 10.1007/s11063-019-10097-7
    [100] Z. Cai, L. Huang, Finite-time stabilization of delayed memristive neural networks: Discontinuous state-feedback and adaptive control approach, IEEE Trans. Neural Networks Learn. Syst., 29 (2017), 856–868. https://doi.org/10.1109/TNNLS.2017.2651023 doi: 10.1109/TNNLS.2017.2651023
    [101] L. Wang, Z. Zeng, M. F. Ge, A disturbance rejection framework for finite-time and fixed-time stabilization of delayed memristive neural networks, IEEE Trans. Syst. Man Cybern.: Syst., 51 (2019), 905–915. https://doi.org/10.1109/TSMC.2018.2888867 doi: 10.1109/TSMC.2018.2888867
    [102] Y. Sheng, H. Zhang, Z. Zeng, Stabilization of fuzzy memristive neural networks with mixed time delays, IEEE Trans. Fuzzy Syst., 26 (2017), 2591–2606. https://doi.org/10.1109/TFUZZ.2017.2783899 doi: 10.1109/TFUZZ.2017.2783899
    [103] Q. Xiao, Z. Zeng, Lagrange stability for T–S fuzzy memristive neural networks with time-varying delays on time scales, IEEE Trans. Fuzzy Syst., 26 (2017), 1091–1103. https://doi.org/10.1109/TFUZZ.2017.2704059 doi: 10.1109/TFUZZ.2017.2704059
    [104] Y. Sheng, F. L. Lewis, Z. Zeng, Exponential stabilization of fuzzy memristive neural networks with hybrid unbounded time-varying delays, IEEE Trans. Neural Networks Learn. Syst., 30 (2018), 739–750. https://doi.org/10.1109/TNNLS.2018.2852497 doi: 10.1109/TNNLS.2018.2852497
    [105] Y. Sheng, F. L. Lewis, Z. Zeng, T. Huang, Lagrange stability and finite-time stabilization of fuzzy memristive neural networks with hybrid time-varying delays, IEEE Trans. Cybern., 50 (2019), 2959–2970. https://doi.org/10.1109/TCYB.2019.2912890 doi: 10.1109/TCYB.2019.2912890
    [106] S. Yang, C. Li, T. Huang, Exponential stabilization and synchronization for fuzzy model of memristive neural networks by periodically intermittent control, Neural Networks, 75 (2016), 162–172. https://doi.org/10.1016/j.neunet.2015.12.003 doi: 10.1016/j.neunet.2015.12.003
    [107] X. Wang, J. H. Park, S. Zhong, H. Yang, A switched operation approach to sampled-data control stabilization of fuzzy memristive neural networks with time-varying delay, IEEE Trans. Neural Networks Learn. Syst., 31 (2019), 891–900. https://doi.org/10.1109/TNNLS.2019.2910574 doi: 10.1109/TNNLS.2019.2910574
    [108] R. Zhang, D. Zeng, J. H. Park, H. K. Lam, S. Zhong, Fuzzy adaptive event-triggered sampled-data control for stabilization of T-S fuzzy memristive neural networks with reaction-diffusion terms, IEEE Trans. Fuzzy Syst., 29 (2020), 1775–1785. https://doi.org/10.1109/TFUZZ.2020.2985334 doi: 10.1109/TFUZZ.2020.2985334
    [109] X. Li, T. Huang, J. A. Fang, Event-triggered stabilization for takagi–sugeno fuzzy complex-valued memristive neural networks with mixed time-varying delays, IEEE Trans. Fuzzy Syst., 29 (2020), 1853–1863. https://doi.org/10.1109/TFUZZ.2020.2986713 doi: 10.1109/TFUZZ.2020.2986713
    [110] H. Wei, R. Li, B. Wu, Dynamic analysis of fractional-order quaternion-valued fuzzy memristive neural networks: Vector ordering approach, Fuzzy Sets Syst., 411 (2021), 1–24. https://doi.org/10.1016/j.fss.2020.02.013 doi: 10.1016/j.fss.2020.02.013
    [111] R. Sakthivel, R. Raja, S. M. Anthoni, Exponential stability for delayed stochastic bidirectional associative memory neural networks with markovian jumping and impulses, J. Optim. Theory Appl., 150 (2011), 166–187. https://doi.org/10.1007/s10957-011-9808-4 doi: 10.1007/s10957-011-9808-4
    [112] J. Li, M. Hu, L. Guo, Exponential stability of stochastic memristor-based recurrent neural networks with time-varying delays, Neurocomputing, 138 (2014), 92–98. https://doi.org/10.1016/j.neucom.2014.02.042 doi: 10.1016/j.neucom.2014.02.042
    [113] Z. Meng, Z. Xiang, Stability analysis of stochastic memristor-based recurrent neural networks with mixed time-varying delays, Neural Comput. Appl., 28 (2017), 1787–1799. https://doi.org/10.1007/s00521-015-2146-y doi: 10.1007/s00521-015-2146-y
    [114] X. Li, J. Fang, H. Li, Exponential stabilisation of stochastic memristive neural networks under intermittent adaptive control, IET Control Theory Appl., 11 (2017), 2432–2439. https://doi.org/10.1049/iet-cta.2017.0021 doi: 10.1049/iet-cta.2017.0021
    [115] D. Liu, S. Zhu, W. Chang, Mean square exponential input-to-state stability of stochastic memristive complex-valued neural networks with time varying delay, Int. J. Syst. Sci., 48 (2017), 1966–1977. https://doi.org/10.1080/00207721.2017.1300706 doi: 10.1080/00207721.2017.1300706
    [116] C. Li, J. Lian, Y. Wang, Stability of switched memristive neural networks with impulse and stochastic disturbance, Neurocomputing, 275 (2018), 2565–2573. https://doi.org/10.1016/j.neucom.2017.11.031 doi: 10.1016/j.neucom.2017.11.031
    [117] H. Liu, Z. Wang, B. Shen, T. Huang, F. E. Alsaadi, Stability analysis for discrete-time stochastic memristive neural networks with both leakage and probabilistic delays, Neural Networks, 102 (2018), 1–9. https://doi.org/10.1016/j.neunet.2018.02.003 doi: 10.1016/j.neunet.2018.02.003
    [118] K. Ding, Q. Zhu, Impulsive method to reliable sampled-data control for uncertain fractional-order memristive neural networks with stochastic sensor faults and its applications, Nonlinear Dyn., 100 (2020), 2595–2608. https://doi.org/10.1007/s11071-020-05670-y doi: 10.1007/s11071-020-05670-y
    [119] S. Duan, H. Wang, L. Wang, T. Huang, C. Li, Impulsive effects and stability analysis on memristive neural networks with variable delays, IEEE Trans. Neural Networks Learn. Syst., 28 (2016), 476–481. https://doi.org/10.1109/TNNLS.2015.2497319 doi: 10.1109/TNNLS.2015.2497319
    [120] W. Zhang, T. Huang, X. He, C. Li, Global exponential stability of inertial memristor-based neural networks with time-varying delays and impulses, Neural Networks, 95 (2017), 102–109. https://doi.org/10.1016/j.neunet.2017.03.012 doi: 10.1016/j.neunet.2017.03.012
    [121] W. Zhu, D. Wang, L. Liu, G. Feng, Event-based impulsive control of continuous-time dynamic systems and its application to synchronization of memristive neural networks, IEEE Trans. Neural Networks Learn. Syst., 29 (2017), 3599–3609. https://doi.org/10.1109/TNNLS.2017.2731865 doi: 10.1109/TNNLS.2017.2731865
    [122] H. Wang, S. Duan, T. Huang, C. Li, L. Wang, Novel stability criteria for impulsive memristive neural networks with time-varying delays, Circuits Syst. Signal Process., 35 (2016), 3935–3956. https://doi.org/10.1007/s00034-015-0240-0 doi: 10.1007/s00034-015-0240-0
    [123] J. Qi, C. Li, T. Huang, Stability of delayed memristive neural networks with time-varying impulses, Cognit. Neurodyn., 8 (2014), 429–436. https://doi.org/10.1007/s11571-014-9286-0 doi: 10.1007/s11571-014-9286-0
    [124] J. G. Lu, Global exponential stability and periodicity of reaction-diffusion delayed recurrent neural networks with dirichlet boundary conditions, Chaos Solitons Fractals, 35 (2008), 116–125. https://doi.org/10.1016/j.chaos.2007.05.002 doi: 10.1016/j.chaos.2007.05.002
    [125] J. L. Wang, H. N. Wu, L. Guo, Passivity and stability analysis of reaction-diffusion neural networks with Dirichlet boundary conditions, IEEE Trans. Neural Networks, 22 (2011), 2105–2116. https://doi.org/10.1109/TNN.2011.2170096 doi: 10.1109/TNN.2011.2170096
    [126] L. Wang, R. Zhang, Y. Wang, Global exponential stability of reaction-diffusion cellular neural networks with S-type distributed time delays, Nonlinear Anal. Real World Appl., 10 (2009), 1101–1113. https://doi.org/10.1016/j.nonrwa.2007.12.002 doi: 10.1016/j.nonrwa.2007.12.002
    [127] L. Wang, M. F. Ge, J. Hu, G. Zhang, Global stability and stabilization for inertial memristive neural networks with unbounded distributed delays, Nonlinear Dyn., 95 (2019), 943–955. https://doi.org/10.1007/s11071-018-4606-2 doi: 10.1007/s11071-018-4606-2
    [128] L. Wang, H. He, Z. Zeng, Intermittent stabilization of fuzzy competitive neural networks with reaction diffusions, IEEE Trans. Fuzzy Syst., 29 (2021), 2361–2372. https://doi.org/10.1109/TFUZZ.2020.2999041 doi: 10.1109/TFUZZ.2020.2999041
    [129] R. Rakkiyappan, S. Dharani, Q. Zhu, Synchronization of reaction-diffusion neural networks with time-varying delays via stochastic sampled-data controller, Nonlinear Dyn., 79 (2015), 485–500. https://doi.org/10.1007/s11071-014-1681-x doi: 10.1007/s11071-014-1681-x
    [130] Z. P. Wang, H. N. Wu, J. L. Wang, H. X. Li, Quantized sampled-data synchronization of delayed reaction-diffusion neural networks under spatially point measurements, IEEE Trans. Cybern., 51 (2021), 5740–5751. https://doi.org/10.1109/TCYB.2019.2960094 doi: 10.1109/TCYB.2019.2960094
    [131] Q. Qiu, H. Su, Sampling-based event-triggered exponential synchronization for reaction-diffusion neural networks, IEEE Trans. Neural Networks Learn. Syst., 34 (2021), 1209–1217. https://doi.org/10.1109/TNNLS.2021.3105126 doi: 10.1109/TNNLS.2021.3105126
    [132] D. Zeng, R. Zhang, J. H. Park, Z. Pu, Y. Liu, Pinning synchronization of directed coupled reaction-diffusion neural networks with sampled-data communications, IEEE Trans. Neural Networks Learn. Syst., 31 (2020), 2092–2103. https://doi.org/10.1109/TNNLS.2019.2928039 doi: 10.1109/TNNLS.2019.2928039
    [133] Z. Guo, S. Wang, J. Wang, Global exponential synchronization of coupled delayed memristive neural networks with reaction–diffusion terms via distributed pinning controls, IEEE Trans. Neural Networks Learn. Syst., 32 (2021), 105–116. https://doi.org/10.1109/TNNLS.2020.2977099 doi: 10.1109/TNNLS.2020.2977099
    [134] Y. Cao, Y. Cao, Z. Guo, T. Huang, S. Wen, Global exponential synchronization of delayed memristive neural networks with reaction-diffusion terms, Neural Networks, 123 (2020), 70–81. https://doi.org/10.1016/j.neunet.2019.11.008 doi: 10.1016/j.neunet.2019.11.008
    [135] L. Shanmugam, P. Mani, R. Rajan, Y. H. Joo, Adaptive synchronization of reaction-diffusion neural networks and its application to secure communication, IEEE Trans. Cybern., 50 (2020), 911–922. https://doi.org/10.1109/TCYB.2018.2877410 doi: 10.1109/TCYB.2018.2877410
    [136] J. L. Wang, Z. Qin, H. N. Wu, T. Huang, Passivity and synchronization of coupled uncertain reaction-diffusion neural networks with multiple time delays, IEEE Trans. Neural Networks Learn. Syst., 30 (2019), 2434–2448. https://doi.org/10.1109/TNNLS.2018.2884954 doi: 10.1109/TNNLS.2018.2884954
    [137] R. Zhang, D. Zeng, J. H. Park, Y. Liu, X. Xie, Adaptive event-triggered synchronization of reaction-diffusion neural networks, IEEE Trans. Neural Networks Learn. Syst., 32 (2021), 3723–3735. https://doi.org/10.1109/TNNLS.2020.3027284 doi: 10.1109/TNNLS.2020.3027284
    [138] J. Pan, X. Liu, S. Zhong, Stability criteria for impulsive reaction-diffusion cohen-grossberg neural networks with time-varying delays, Math. Comput. Modell., 51 (2010), 1037–1050. https://doi.org/10.1016/j.mcm.2009.12.004 doi: 10.1016/j.mcm.2009.12.004
    [139] S. Mongolian, Y. Kao, C. Wang, H. Xia, Robust mean square stability of delayed stochastic generalized uncertain impulsive reaction-diffusion neural networks, J. Franklin Inst., 358 (2021), 877–894. https://doi.org/10.1016/j.jfranklin.2020.04.011 doi: 10.1016/j.jfranklin.2020.04.011
    [140] T. Wei, P. Lin, Y. Wang, L. Wang, Stability of stochastic impulsive reaction-diffusion neural networks with S-type distributed delays and its application to image encryption, Neural Networks, 116 (2019), 35–45. https://doi.org/10.1016/j.neunet.2019.03.016 doi: 10.1016/j.neunet.2019.03.016
    [141] T. Wei, X. Li, V. Stojanovic, Input-to-state stability of impulsive reaction-diffusion neural networks with infinite distributed delays, Nonlinear Dyn., 103 (2021), 1733–1755. https://doi.org/10.1007/s11071-021-06208-6 doi: 10.1007/s11071-021-06208-6
    [142] J. Cao, G. Stamov, I. Stamova, S. Simeonov, Almost periodicity in impulsive fractional-order reaction-diffusion neural networks with time-varying delays, IEEE Trans. Cybern., 51 (2021), 151–161. https://doi.org/10.1109/TCYB.2020.2967625 doi: 10.1109/TCYB.2020.2967625
    [143] T. Wei, X. Li, J. Cao, Stability of delayed reaction-diffusion neural-network models with hybrid impulses via vector Lyapunov function, IEEE Trans. Neural Networks Learn. Syst., early access, (2022), 1–12. https://doi.org/10.1109/TNNLS.2022.3143884
    [144] C. Hu, H. Jiang, Z. Teng, Impulsive control and synchronization for delayed neural networks with reaction-diffusion terms, IEEE Trans. Neural Networks, 21 (2010), 67–81. https://doi.org/10.1109/TNN.2009.2034318 doi: 10.1109/TNN.2009.2034318
    [145] X. Yang, J. Cao, Z. Yang, Synchronization of coupled reaction-diffusion neural networks with time-varying delays via pinning-impulsive controller, SIAM J. Control Optim., 51 (2013), 3486–3510. https://doi.org/10.1137/120897341 doi: 10.1137/120897341
    [146] W. H. Chen, S. Luo, W. X. Zheng, Impulsive synchronization of reaction–diffusion neural networks with mixed delays and its application to image encryption, IEEE Trans. Neural Networks Learn. Syst., 27 (2016), 2696–2710. https://doi.org/10.1109/TNNLS.2015.2512849 doi: 10.1109/TNNLS.2015.2512849
    [147] H. Chen, P. Shi, C. C. Lim, Pinning impulsive synchronization for stochastic reaction–diffusion dynamical networks with delay, Neural Networks, 106 (2018), 281–293. https://doi.org/10.1016/j.neunet.2018.07.009 doi: 10.1016/j.neunet.2018.07.009
    [148] Y. Wang, P. Lin, L. Wang, Exponential stability of reaction-diffusion high-order Markovian jump hopfield neural networks with time-varying delays, Nonlinear Anal. Real World Appl., 13 (2012), 1353–1361. https://doi.org/10.1016/j.nonrwa.2011.10.013 doi: 10.1016/j.nonrwa.2011.10.013
    [149] R. Zhang, H. Wang, J. H. Park, K. Shi, P. He, Mode-dependent adaptive event-triggered control for stabilization of Markovian memristor-based reaction-diffusion neural networks, IEEE Trans. Neural Networks Learn. Syst., early access, (2021), 1–13. https://doi.org/10.1109/TNNLS.2021.3122143
    [150] X. X. Han, K. N. Wu, Y. Niu, Asynchronous boundary stabilization of stochastic Markov jump reaction-diffusion systems, IEEE Trans. Syst. Man Cybern.: Syst., 52 (2022), 5668–5678. https://doi.org/10.1109/TSMC.2021.3130271 doi: 10.1109/TSMC.2021.3130271
    [151] Q. Zhu, X. Li, X. Yang, Exponential stability for stochastic reaction-diffusion BAM neural networks with time-varying and distributed delays, Appl. Math. Comput., 217 (2011), 6078–6091. https://doi.org/10.1016/j.amc.2010.12.077 doi: 10.1016/j.amc.2010.12.077
    [152] Y. Sheng, H. Zhang, Z. Zeng, Stability and robust stability of stochastic reaction–diffusion neural networks with infinite discrete and distributed delays, IEEE Trans. Syst. Man Cybern.: Syst., 50 (2020), 1721–1732. https://doi.org/10.1109/TSMC.2017.2783905 doi: 10.1109/TSMC.2017.2783905
    [153] X. Z. Liu, K. N. Wu, X. Ding, W. Zhang, Boundary stabilization of stochastic delayed Cohen-Grossberg neural networks with diffusion terms, IEEE Trans. Neural Networks Learn. Syst., 33 (2022), 3227–3237. https://doi.org/10.1109/TNNLS.2021.3051363 doi: 10.1109/TNNLS.2021.3051363
    [154] X. Liang, L. Wang, Y. Wang, R. Wang, Dynamical behavior of delayed reaction-diffusion Hopfield neural networks driven by infinite dimensional Wiener processes, IEEE Trans. Neural Networks Learn. Syst., 27 (2016), 1816–1826. https://doi.org/10.1109/TNNLS.2015.2460117 doi: 10.1109/TNNLS.2015.2460117
    [155] T. Wei, P. Lin, Q. Zhu, L. Wang, Y. Wang, Dynamical behavior of nonautonomous stochastic reaction-diffusion neural-network models, IEEE Trans. Neural Networks Learn. Syst., 30 (2019), 1575–1580. https://doi.org/10.1109/TNNLS.2018.2869028 doi: 10.1109/TNNLS.2018.2869028
    [156] Q. Yao, P. Lin, L. Wang, Y. Wang, Practical exponential stability of impulsive stochastic reaction-diffusion systems with delays, IEEE Trans. Cybern., 52 (2022), 2687–2697. https://doi.org/10.1109/TCYB.2020.3022024 doi: 10.1109/TCYB.2020.3022024
    [157] Q. Ma, S. Xu, Y. Zou, G. Shi, Synchronization of stochastic chaotic neural networks with reaction-diffusion terms, Nonlinear Dyn., 67 (2012), 2183–2196. https://doi.org/10.1007/s11071-011-0138-8 doi: 10.1007/s11071-011-0138-8
    [158] Y. Sheng, Z. Zeng, Impulsive synchronization of stochastic reaction-diffusion neural networks with mixed time delays, Neural Networks, 103 (2018), 83–93. https://doi.org/10.1016/j.neunet.2018.03.010 doi: 10.1016/j.neunet.2018.03.010
    [159] M. S. Ali, L. Palanisamy, J. Yogambigai, L. Wang, Passivity-based synchronization of Markovian jump complex dynamical networks with time-varying delays, parameter uncertainties, reaction–diffusion terms, and sampled-data control, J. Comput. Appl. Math., 352 (2019), 79–92. https://doi.org/10.1016/j.cam.2018.10.047 doi: 10.1016/j.cam.2018.10.047
    [160] X. Yang, Q. Song, J. Cao, J. Lu, Synchronization of coupled Markovian reaction-diffusion neural networks with proportional delays via quantized control, IEEE Trans. Neural Networks Learn. Syst., 30 (2019), 951–958. https://doi.org/10.1109/TNNLS.2018.2853650 doi: 10.1109/TNNLS.2018.2853650
    [161] X. Song, J. Man, S. Song, Z. Wang, Finite-time nonfragile time-varying proportional retarded synchronization for Markovian inertial memristive NNs with reaction–diffusion items, Neural Networks, 123 (2020), 317–330. https://doi.org/10.1016/j.neunet.2019.12.011 doi: 10.1016/j.neunet.2019.12.011
    [162] H. Shen, X. Wang, J. Wang, J. Cao, L. Rutkowski, Robust composite $H_\infty$ synchronization of Markov jump reaction-diffusion neural networks via a disturbance observer-based method, IEEE Trans. Cybern., 52 (2022), 12712–12721. https://doi.org/10.1109/TCYB.2021.3087477 doi: 10.1109/TCYB.2021.3087477
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1492) PDF downloads(127) Cited by(0)

Article outline

Figures and Tables

Figures(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog