Research article Special Issues

Fixed point of Hardy-Rogers-type contractions on metric spaces with graph


  • Received: 02 September 2022 Revised: 04 November 2022 Accepted: 13 November 2022 Published: 21 November 2022
  • This paper presents a novel concept of $ G $-Hardy-Rogers functional operators on metric spaces endowed with a graph. It investigates sufficient circumstances under which such a mapping becomes a Picard operator. As applications of the principal idea discussed herein, a few important corresponding fixed point results in ordered metric spaces and cyclic operators are pointed out and analyzed. For upcoming research papers in this field, comparative graphical illustrations are created to highlight the pre-eminence of proposed notions with respect to the existing ones.

    Citation: Mohammed Shehu Shagari, Faryad Ali, Trad Alotaibi, Akbar Azam. Fixed point of Hardy-Rogers-type contractions on metric spaces with graph[J]. Electronic Research Archive, 2023, 31(2): 675-690. doi: 10.3934/era.2023033

    Related Papers:

  • This paper presents a novel concept of $ G $-Hardy-Rogers functional operators on metric spaces endowed with a graph. It investigates sufficient circumstances under which such a mapping becomes a Picard operator. As applications of the principal idea discussed herein, a few important corresponding fixed point results in ordered metric spaces and cyclic operators are pointed out and analyzed. For upcoming research papers in this field, comparative graphical illustrations are created to highlight the pre-eminence of proposed notions with respect to the existing ones.



    加载中


    [1] S. Banach, Sur les operations dans les ensembles abstraits et leur applications aux equations integrales, Fund. Math., 3 (1922), 133–181.
    [2] M. Alansari, M. S. Shagari, Analysis of fractional differential inclusion models for COVID-19 via fixed point results in metric space, J. Funct. Spaces, 2022 (2022). https://doi.org/10.1155/2022/8311587
    [3] P. Debnath, N. Konwar, S. Radenovic, Metric Fixed Point Theory: Applications in Science, Engineering and Behavioural Sciences, Springer Nature Singapore, 2021.
    [4] F. Echenique, A short and constructive proof of Tarski's fixed-point theorem, Int. J. Game Theory, 33 (2005), 215–218.
    [5] J. A. Jiddah, M. Alansari, O. K. S. K. Mohamed, M. S. Shagari, A. A. Bakery, Fixed point results of Jaggi-type hybrid contraction in generalized metric space, J. Funct. Spaces, 2022 (2022). https://doi.org/10.1155/2022/2205423
    [6] M. Noorwali, S. S. Yeşilkaya, On Jaggi-Suzuki-type hybrid contraction mappings, J. Funct. Spaces, 2021 (2021). https://doi.org/10.1155/2021/6721296.
    [7] G. E. Hary, T. D. Rogers, A generalization of a fixed point theorem of Reich, Can. Math. Bull., 16 (1973), 201–206. https://doi.org/10.4153/CMB-1973-036-0 doi: 10.4153/CMB-1973-036-0
    [8] S. Reich, Some remarks concerning contraction mappings, Can. Math. Bull., 14 (1971), 121–124. https://doi.org/10.4153/CMB-1971-024-9 doi: 10.4153/CMB-1971-024-9
    [9] A. F. R. L. de Hierro, E. Karapınar, A. Fulga, Multiparametric contractions and related Hardy-Roger type fixed point theorems, Mathematics, 8 (2020), 957. https://doi.org/10.3390/math8060957 doi: 10.3390/math8060957
    [10] M. U. Ali, H. Aydi, M. Alansari, New generalizations of set valued interpolative Hardy-Rogers type contractions in $b-$metric spaces, J. Funct. Spaces, 2021 (2021). https://doi.org/10.1155/2021/6641342.
    [11] H. Aydi, C. M. Chen, E. Karapınar, Interpolative Ćirić-Reich-Rus type contractions via the Branciari distance, Mathematics, 7 (2019), 84. https://doi.org/10.3390/math7010084 doi: 10.3390/math7010084
    [12] H. Aydi, E. Karapinar, A. F. R. L. de Hierro, w-Interpolative Ćirić-Reich-Rus-Type contractions, Mathematics, 7 (2019), 57. https://doi.org/10.3390/math7010057 doi: 10.3390/math7010057
    [13] P. Debnath, M. de L. Sen, Set-valued interpolative Hardy-Rogers and set-valued Reich-Rus-Ćirić-type contractions in b-metric spaces, Mathematics, 7 (2019), 849. https://doi.org/10.3390/math7090849 doi: 10.3390/math7090849
    [14] E. Karapınar, O. Alqahtani, H. Aydi, On interpolative Hardy-Rogers type contractions, Symmetry, 11 (2019), 8. https://doi.org/10.3390/sym11010008 doi: 10.3390/sym11010008
    [15] P. Saipara, K. Khammahawong, P. Kumam, Fixed-point theorem for a generalized almost Hardy-Rogers-type $F$-contraction on metric-like spaces, Math. Meth. Appl. Sci., 42 (2019), 5898–5919. https://doi.org/10.1002/mma.5793 doi: 10.1002/mma.5793
    [16] M. A. Petric, Some remarks concerning $\grave{C}$iri$\grave{c}$-Reich-Rus operators, Creat. Math. Inf., 18 (2009), 188–193.
    [17] R. Johnsonbaugh, Discrete mathematics, Prentice-Hall, New Jersey, 1997.
    [18] F. Bojor, Fixed point theorems for Reich type contractions on metric spaces with a graph, Nonlinear Anal., 75 (2012), 3895–3901. https://doi.org/10.1016/j.na.2012.02.009 doi: 10.1016/j.na.2012.02.009
    [19] J. Jachymski, The contraction principle for mappings on a metric space with a graph, Proc. Am. Math. Soc., 1 (2008), 1359–1373.
    [20] O. Acar, H. Aydi, M. de la Sen, New fixed point results via a graph structure, Mathematics, 9 (2021), 1013. https://doi.org/10.3390/math9091013. doi: 10.3390/math9091013
    [21] E. Ameer, H. Aydi, M. Arshad, M. de la Sen, Hybrid Ćirić Type Graphic Y, Contraction mappings with applications to electric circuit and fractional differential equations, Symmetry, 12 (2020), 467. https://doi.org/10.3390/sym12030467 doi: 10.3390/sym12030467
    [22] N. A. K. Muhammad, A. Azam, M. Nayyar, Coincidence points of a sequence of multivalued mappings in metric space with a graph, Mathematics, 5 (2017), 30. https://doi.org/10.3390/math5020030 doi: 10.3390/math5020030
    [23] M. Shoaib, M. Sarwar, K. Shah, N. Mlaiki, Common fixed point results via set-valued generalized weak contraction with directed graph and its application, J. Math., 2022 (2022). https://doi.org/10.1155/2022/2068050
    [24] A. Sultana, V. Vetrivel, Fixed points of Mizoguchi-Takahashi contraction on a metric space with a graph and applications, J. Math. Anal. Appl., 417 (2014), 336–344. https://doi.org/10.1016/j.jmaa.2014.03.015 doi: 10.1016/j.jmaa.2014.03.015
    [25] R. S. Adiguzel, U. Aksoy, E. Karapinar, I. M. Erhan, On the solutions of fractional differential equations via Geraghty type hybrid contractions, Appl. Comp. Math., 20 (2021), 313–333.
    [26] R. S. Adigüzel, U. Aksoy, E. Karapinar, I. M. Erhan, On the solution of a boundary value problem associated with a fractional differential equation, Math. Meth. Appl. Sci., 4 (2020), 123–129. https://doi.org/10.1002/mma.6652 doi: 10.1002/mma.6652
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1474) PDF downloads(82) Cited by(0)

Article outline

Figures and Tables

Figures(3)  /  Tables(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog