Research article Special Issues

Transmission effect of extreme risks in China's financial sectors at major emergencies: Empirical study based on the GPD-CAViaR and TVP-SV-VAR approach

  • Received: 16 September 2022 Revised: 01 November 2022 Accepted: 10 November 2022 Published: 08 December 2022
  • Major emergencies cause massive financial risk and economic loss. In the context of major emergencies, we propose the GPD-CAViaR model to depict the extreme risks of financial sectors, and utilize the TVP-SV-VAR model to analyze their transmission effect. We find that (ⅰ) the securities sector has the highest extreme risks among the four financial sectors; (ⅱ) when major emergencies occur, the extreme risks of various financial sectors increase rapidly; (ⅲ) the transmission effect in short term is stronger than that in medium and long term; and (ⅳ) the transmission effects at different time points are relatively consistent.

    Citation: Tingcheng Mo, Chi Xie, Kelong Li, Yingbo Ouyang, Zhijian Zeng. Transmission effect of extreme risks in China's financial sectors at major emergencies: Empirical study based on the GPD-CAViaR and TVP-SV-VAR approach[J]. Electronic Research Archive, 2022, 30(12): 4657-4673. doi: 10.3934/era.2022236

    Related Papers:

  • Major emergencies cause massive financial risk and economic loss. In the context of major emergencies, we propose the GPD-CAViaR model to depict the extreme risks of financial sectors, and utilize the TVP-SV-VAR model to analyze their transmission effect. We find that (ⅰ) the securities sector has the highest extreme risks among the four financial sectors; (ⅱ) when major emergencies occur, the extreme risks of various financial sectors increase rapidly; (ⅲ) the transmission effect in short term is stronger than that in medium and long term; and (ⅳ) the transmission effects at different time points are relatively consistent.



    加载中


    [1] G. Girardi, A. T. Ergün, Systemic risk measurement: Multivariate GARCH estimation of CoVaR, J. Bank. Financ., 37 (2013), 3169–3180. https://doi.org/10.1016/j.jbankfin.2013.02.027 doi: 10.1016/j.jbankfin.2013.02.027
    [2] W. Silva, H. Kimura, V. A. Sobreiro, An analysis of the literature on systemic financial risk: A survey, J. Financ. Stabil., 28 (2017), 91–114. https://doi.org/10.1016/j.jfs.2016.12.004 doi: 10.1016/j.jfs.2016.12.004
    [3] Z. Ouyang, S. Chen, Y. Lai, X. Yang, The correlations among COVID-19, the effect of public opinion, and the systemic risks of China's financial industries, Physica A, 600 (2022), 127518. https://doi.org/10.1016/j.physa.2022.127518 doi: 10.1016/j.physa.2022.127518
    [4] Z. Ouyang, M. Liu, S. Huang, T. Yao, Does the source of oil price shocks matter for the systemic risk?, Energy Econ., 109 (2022), 105958. https://doi.org/10.1016/j.eneco.2022.105958 doi: 10.1016/j.eneco.2022.105958
    [5] H. He, S. Dai, A prediction model for stock market based on the integration of independent component analysis and Multi-LSTM, Electron. Res. Archive, 30 (2022), 3855–3871. https://doi.org/10.3934/era.2022196 doi: 10.3934/era.2022196
    [6] C. Luo, L. Liu, D. Wang, Multiscale financial risk contagion between international stock markets: Evidence from EMD-Copula-CoVaR analysis, North Am. J. Econ. Finance, 58 (2021): 101512. https://doi.org/10.1016/j.najef.2021.101512 doi: 10.1016/j.najef.2021.101512
    [7] R. F. Engle, S. Manganelli, CAViaR: Conditional autoregressive value at risk by regression quantiles, J. Business Econ. Stat., 22 (2004), 367–381. https://doi.org/10.1198/073500104000000370 doi: 10.1198/073500104000000370
    [8] Z. Li, H. Dong, C. Floros, A. Charemis, P. Failler, Re-examining bitcoin volatility: A CAViaR-based approach, Emerg. Mark. Finance Trade, 58 (2022), 1320–1338. https://doi.org/10.1080/1540496X.2021.1873127 doi: 10.1080/1540496X.2021.1873127
    [9] S. Chen, S. Liu, R. Cai, Y. Zhang, The factors that influence exchange-rate risk: Evidence in China, Emerg. Mark. Finance Trade, 56 (2020), 1275–1292. https://doi.org/10.1080/1540496X.2019.1636229 doi: 10.1080/1540496X.2019.1636229
    [10] H. White, T. H. Kim, S. Manganelli, VAR for VaR: Measuring tail dependence using multivariate regression quantiles, J. Econom., 187 (2015), 169–188. https://doi.org/10.1016/j.jeconom.2015.02.004 doi: 10.1016/j.jeconom.2015.02.004
    [11] D. Huang, B. Yu, Z. Lu, F. J. Fabozzi, S. Focardi, M. Fukushima, Index-Exciting CAViaR: A new empirical time-varying risk model, Stud. Nonlinear Dyn. E., 14 (2010), 1–24. https://doi.org/10.2202/1558-3708.1805 doi: 10.2202/1558-3708.1805
    [12] B. Zhang, J. Duan, A research based on POT-CAViaR model of extreme risk measure, Appl. Math. Nonlinear Sci., 5 (2020), 461–472. https://doi.org/10.2478/amns.2020.2.00040 doi: 10.2478/amns.2020.2.00040
    [13] Y. Hong, Y. Liu, S. Wang, Granger causality in risk and detection of extreme risk spillover between financial markets, J. Econom., 150 (2009), 271–287. https://doi.org/10.1016/j.jeconom.2008.12.013 doi: 10.1016/j.jeconom.2008.12.013
    [14] Y. Ren, W. Zhao, W. You, H. Zhu, Multiscale features of extreme risk spillover networks among global stock markets, North Am. J. Econ. Finance, 62 (2022), 101754. https://doi.org/10.1016/j.najef.2022.101754 doi: 10.1016/j.najef.2022.101754
    [15] D. L. Kolia, S. Papadopoulos, The levels of bank capital, risk and efficiency in the Eurozone and the US in the aftermath of the financial crisis, Quant. Financ. Econ., 4 (2020), 66–90. https://doi.org/10.3934/QFE.2020004 doi: 10.3934/QFE.2020004
    [16] Y. Yao, D. Hu, C. Yang, Y. Tan, The impact and mechanism of fintech on green total factor productivity. Green Financ., 3 (2021), 198–221. https://doi.org/10.3934/GF.2021011 doi: 10.3934/GF.2021011
    [17] M. Comunale, A panel VAR analysis of macro-financial imbalances in the EU, J. Int. Money Finance, 121 (2021), 102511. https://doi.org/10.1016/j.jimonfin.2021.102511 doi: 10.1016/j.jimonfin.2021.102511
    [18] Y. Ouyang, P. Li, On the nexus of financial development, economic growth, and energy consumption in China: New perspective from a GMM panel VAR approach, Energy Econ., 71 (2018), 238–252. https://doi.org/10.1016/j.eneco.2018.02.015 doi: 10.1016/j.eneco.2018.02.015
    [19] Y. Wu, S. Ma, Impact of COVID-19 on energy prices and main macroeconomic indicators—evidence from China's energy market, Green Financ., 3 (2021), 383–402. https://doi.org/10.3934/GF.2021019 doi: 10.3934/GF.2021019
    [20] Y. Jiang, G. Tian, B. Mo, Spillover and quantile linkage between oil price shocks and stock returns: New evidence from G7 countries, Financ. Innov., 6 (2020), 1–26. https://doi.org/10.1186/s40854-020-00208-y doi: 10.1186/s40854-020-00208-y
    [21] C. Zheng, An innovative MS-VAR model with integrated financial knowledge for measuring the impact of stock market bubbles on financial security, J. Innov. Knowl., 7 (2022), 100207. https://doi.org/10.1016/j.jik.2022.100207 doi: 10.1016/j.jik.2022.100207
    [22] G. Magkonis, A. Tsopanakis, Exploring the effects of financial and fiscal vulnerabilities on G7 economies: Evidence from SVAR analysis, J. Int. Financ. Mark. I., 32 (2014), 343–367. https://doi.org/10.1016/j.intfin.2014.06.010 doi: 10.1016/j.intfin.2014.06.010
    [23] J. Chen, X. Zhu, M. Zhong, Nonlinear effects of financial factors on fluctuations in nonferrous metals prices: A Markov-switching VAR analysis, Resour. Policy, 61 (2019), 489–500. https://doi.org/10.1016/j.resourpol.2018.04.015 doi: 10.1016/j.resourpol.2018.04.015
    [24] D. F. Ahelegbey, P. Giudici, S. Q. Hashem, Network VAR models to measure financial contagion, North Am. J. Econ. Finance, 55 (2021), 101318. https://doi.org/10.1016/j.najef.2020.101318 doi: 10.1016/j.najef.2020.101318
    [25] Z. Li, C. Yang, Z. Huang, How does the fintech sector react to signals from central bank digital currencies?, Finance Res. Lett., 50 (2022), 103308. https://doi.org/10.1016/j.frl.2022.103308 doi: 10.1016/j.frl.2022.103308
    [26] Y. Feng, S. Chen, X. Wang, A. Tan, Time-varying impact of US financial conditions on China's inflation: A perspective of different types of events, Quant. Financ. Econ., 5 (2021), 604–622. https://doi.org/10.3934/QFE.2021027 doi: 10.3934/QFE.2021027
    [27] C. Guevara, G. Rodríguez, The role of credit supply shocks in pacific alliance countries: A TVP-VAR-SV approach, North Am. J. Econ. Finance, 52 (2020), 101140. https://doi.org/10.1016/j.najef.2019.101140 doi: 10.1016/j.najef.2019.101140
    [28] S. Manganelli, R. F. Engle, Value at risk models in finance, ECB working paper, 75 (2001), 1–41. https://dx.doi.org/10.2139/ssrn.356220
    [29] M. H. Park, J. H. Kim, Estimating extreme tail risk measures with generalized Pareto distribution, Comput. Stat. Data An., 98 (2016), 91–104. https://doi.org/10.1016/j.csda.2015.12.008 doi: 10.1016/j.csda.2015.12.008
    [30] V. Choulakian, M. A. Stephens, Goodness-of-fit tests for the generalized Pareto distribution, Technometrics, 43 (2001), 478–484. https://doi.org/10.1198/00401700152672573 doi: 10.1198/00401700152672573
    [31] G. E. Primiceri, Time varying structural vector autoregressions and monetary policy, Rev. Econ. Stud., 72 (2005), 821–852. https://doi.org/10.1111/j.1467-937X.2005.00353.x doi: 10.1111/j.1467-937X.2005.00353.x
    [32] J. Nakajima, Time-varying parameter VAR model with stochastic volatility: An overview of methodology and empirical applications, Monetary Econ. Stud., 29 (2011), 107–142.
    [33] J. Que, X Zhang, Money chasing hot industries? Investor attention and valuation of venture capital backed firms, J. Corp. Finance, 68 (2021), 101949. https://doi.org/10.1016/j.jcorpfin.2021.101949 doi: 10.1016/j.jcorpfin.2021.101949
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1235) PDF downloads(52) Cited by(4)

Article outline

Figures and Tables

Figures(4)  /  Tables(5)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog