Research article

The Hom-Long dimodule category and nonlinear equations

  • Received: 08 June 2021 Revised: 22 November 2021 Accepted: 22 November 2021 Published: 13 January 2022
  • In this paper, we construct a kind of new braided monoidal category over two Hom-Hopf algerbas $ (H, \alpha) $ and $ (B, \beta) $ and associate it with two nonlinear equations. We first introduce the notion of an $ (H, B) $-Hom-Long dimodule and show that the Hom-Long dimodule category $ ^{B}_{H} \Bbb L $ is an autonomous category. Second, we prove that the category $ ^{B}_{H} \Bbb L $ is a braided monoidal category if $ (H, \alpha) $ is quasitriangular and $ (B, \beta) $ is coquasitriangular and get a solution of the quantum Yang-Baxter equation. Also, we show that the category $ ^{B}_{H} \Bbb L $ can be viewed as a subcategory of the Hom-Yetter-Drinfeld category $ ^{H{\otimes} B}_{H{\otimes} B} \Bbb {HYD} $. Finally, we obtain a solution of the Hom-Long equation from the Hom-Long dimodules.

    Citation: Shengxiang Wang, Xiaohui Zhang, Shuangjian Guo. The Hom-Long dimodule category and nonlinear equations[J]. Electronic Research Archive, 2022, 30(1): 362-381. doi: 10.3934/era.2022019

    Related Papers:

  • In this paper, we construct a kind of new braided monoidal category over two Hom-Hopf algerbas $ (H, \alpha) $ and $ (B, \beta) $ and associate it with two nonlinear equations. We first introduce the notion of an $ (H, B) $-Hom-Long dimodule and show that the Hom-Long dimodule category $ ^{B}_{H} \Bbb L $ is an autonomous category. Second, we prove that the category $ ^{B}_{H} \Bbb L $ is a braided monoidal category if $ (H, \alpha) $ is quasitriangular and $ (B, \beta) $ is coquasitriangular and get a solution of the quantum Yang-Baxter equation. Also, we show that the category $ ^{B}_{H} \Bbb L $ can be viewed as a subcategory of the Hom-Yetter-Drinfeld category $ ^{H{\otimes} B}_{H{\otimes} B} \Bbb {HYD} $. Finally, we obtain a solution of the Hom-Long equation from the Hom-Long dimodules.



    加载中


    [1] J. Hartwig, D. Larsson, S. Silvestrov, Deformations of Lie algebras using $\sigma$-derivations, J. Algebra, 295 (2006), 314–361. https://doi.org/10.1016/j.jalgebra.2005.07.036 doi: 10.1016/j.jalgebra.2005.07.036
    [2] N. Hu, q-Witt algebras, q-Lie algebras, q-holomorph structure and representations, Algebr. Colloq, 6 (1999), 51–70.
    [3] A. Makhlouf, S. Silvestrov, Hom-algebra structures, J. Gen. Lie Theory Appl., 2 (2008), 51–64. https://doi.org/10.4303/jglta/S070206 doi: 10.4303/jglta/S070206
    [4] A. Makhlouf, S. Silvestrov, Hom-Lie admissible Hom-coalgebras and Hom-Hopf algebras, J. Gen. Lie Theory in Mathematics, Physics and beyond., Springer-Verlag, Berlin, 2009, pp. 189–206. https://doi.org/10.1007/978-3-540-85332-9-17
    [5] A. Makhlouf, S. Silvestrov, Hom-algebras and Hom-coalgebras, J. Algebra Appl., 9 (2010), 553–589. https://doi.org/10.1142/S0219498810004117 doi: 10.1142/S0219498810004117
    [6] S. Caenepeel, I. Goyvaerts, Monoidal Hom-Hopf algebras, Comm. Algebra, 39 (2011), 2216–2240. https://doi.org/10.1080/00927872.2010.490800 doi: 10.1080/00927872.2010.490800
    [7] Y. Chen, X. Zhou, Separable and Frobenius monoidal Hom-algebras, Colloq. Math., 137 (2014), 229–251. https://doi.org/10.4064/cm137-2-8 doi: 10.4064/cm137-2-8
    [8] A. Gohr, On hom-algebras with surjective twisting, J. Algebra, 324 (2010), 1483–1491. https://doi.org/10.1016/j.jalgebra.2010.05.003 doi: 10.1016/j.jalgebra.2010.05.003
    [9] T. Ma, H. Li, T. Yang, Cobraided smash product Hom-Hopf algebras, Colloq. Math., 134 (2014), 75–92. https://doi.org/10.4064/cm134-1-3 doi: 10.4064/cm134-1-3
    [10] X. Zhang, L. Dong, Braided mixed datums and their applications on Hom-quantum groups, Glasg. Math. J., 2018, 60 (2018), 231–251. https://doi.org/10.1017/S0017089517000088 doi: 10.1017/S0017089517000088
    [11] D. Yau, The Hom-Yang-Baxter equation, Hom-Lie algebras, and quasi-triangular bialgebras, J. Phys. A, 42 (2009), 165202. https://doi.org/10.1088/1751-8113/42/16/165202 doi: 10.1088/1751-8113/42/16/165202
    [12] D. Yau, Hom-quantum groups Ⅰ: Quasi-triangular Hom-bialgebras, J. Phys. A, 45 (2012), 065203. https://doi.org/10.1088/1751-8113/45/6/065203 doi: 10.1088/1751-8113/45/6/065203
    [13] X. Fang, W. Liu, Solutions of the BiHom-Yang-Baxter equation, Sbornik: Mathematics, 209 (2018), 901–918. https://doi.org/10.1070/SM8863 doi: 10.1070/SM8863
    [14] S. Wang, S. Guo, BiHom-Lie superalgebra structures and BiHom-Yang-Baxter equations, Adv. Appl. Clifford Algebr., 30 (2020), Art. 35, 18 pp. https://doi.org/10.1007/s00006-020-01060-0 doi: 10.1007/s00006-020-01060-0
    [15] D. Yau, The Hom-Yang-Baxter equation and Hom-Lie algebras, J. Math. Phys., 52 (2011), 053502. https://doi.org/10.1063/1.3571970 doi: 10.1063/1.3571970
    [16] Y. Chen, Z. Wang, L. Zhang, Quasitriangular Hom-Hopf algebras, Colloq. Math., 137 (2014), 67–88. https://doi.org/10.4064/cm137-1-5 doi: 10.4064/cm137-1-5
    [17] X. Zhang, S. Guo, S. Wang, Drinfeld codoubles of Hom-Hopf algebras, Adv. Appl. Clifford Algebr., 29 (2019), Art. 36, 26 pp. https://doi.org/10.1007/s00006-019-0949-0 doi: 10.1007/s00006-019-0949-0
    [18] X. Zhang, W. Wang, X. Zhao, Smash coproducts of monoidal comonads and Hom-entwining structures, Rocky Mountain J. Math., 49 (2019), 2063–2105. https://doi.org/10.1216/RMJ-2019-49-6-2063 doi: 10.1216/RMJ-2019-49-6-2063
    [19] L. Liu, B. Shen, Radford's biproducts and Yetter-Drinfeld modules for monoidal Hom-Hopf algebras, J. Math. Phys., 55 (2014), 031701. https://doi.org/10.1063/1.4866760 doi: 10.1063/1.4866760
    [20] T. Ma, L. Liu, L. Chen, Symmetries of $(m, n)$-Yetter-Drinfeld categories, J. Algebra Appl., 17 (2018), 1850135. https://doi.org/10.1142/S0219498818501359 doi: 10.1142/S0219498818501359
    [21] T. Ma, Y. Wang, L. Liu, Generalized Radford biproduct Hom-Hopf algebras and related braided tensor categories, J. Math., 37 (2017), 1161–1172.
    [22] T. Ma, H. Yang, L. Liu, Q. Chen, On unified Hom-Yetter-Drinfeld categories, J. Geom. Phys., 144 (2019), 81–107. https://doi.org/10.1016/j.geomphys.2019.05.015 doi: 10.1016/j.geomphys.2019.05.015
    [23] A. Makhlouf, F. Panaite, Yetter-Drinfeld modules for Hom-bialgebras, J. Math. Phys., 55 (2014), 013501. https://doi.org/10.1063/1.4858875 doi: 10.1063/1.4858875
    [24] M. You, S. Wang, Constructing new braided $T$-categories over monoidal Hom-Hopf algebras, J. Math. Phys., 2014, 55 (2014), 111701. https://doi.org/10.1063/1.4900824
    [25] Z. Wang, Y. Chen, L. Zhang, The antipode and Drinfel'd double of Hom-Hopf algebras, Sci. Sin. Math., 42 (2012), 1079–1093. https://doi.org/10.1360/012011-138 doi: 10.1360/012011-138
    [26] Y. Chen, L. Zhang, The category of Yetter-Drinfel'd Hom-modules and the quantum Hom-Yang-Baxter equation, J. Math. Phys., 55 (2014), 031702. https://doi.org/10.1063/1.4868964 doi: 10.1063/1.4868964
    [27] G. Militaru, The Long dimodules category and nonlinear equations, Algebr. Represet. Theor., 1999, 2 (1999), 177–200. https://doi.org/10.1023/A:1009905324871
    [28] Y. Chen, Z. Wang, L. Zhang. The FRT-type theorem for the Hom-Long equation. Comm. Algebra, 41 (2013), 3931–3948. https://doi.org/10.1080/00927872.2013.781614 doi: 10.1080/00927872.2013.781614
    [29] S. Wang, N. Ding, New braided monoidal categories over monoidal Hom-Hopf algebras, Colloq. Math., 146 (2017), 77–97. https://doi.org/10.4064/cm6706-11-2015 doi: 10.4064/cm6706-11-2015
    [30] S. Wang, New Turaev braided group categories and group Schur-Weyl duality, Appl. Categor. Struct., 21 (2013), 141–166. https://doi.org/10.1007/s10485-011-9263-2 doi: 10.1007/s10485-011-9263-2
    [31] F. Long, The brauer group of dimodule algebras, J. Algebra, 1974, 30 (1974), 559–601. https://doi.org/10.1016/0021-8693(74)90224-5]
    [32] D. Lu, Braided Yang-Baxter operators, Comm. Algebra, 27 (1999), 2503–2509. https://doi.org/10.1080/00927879908826576 doi: 10.1080/00927879908826576
    [33] L. Zhang, Long bialgebras, dimodule algebras and quantum Yang-Baxter modules over Long bialgebras, Acta Math. Sin., 22 (2006), 1261–1270. https://doi.org/10.1007/s10114-005-0683-5 doi: 10.1007/s10114-005-0683-5
    [34] D. Radford, Hopf Algebras, K $ & $ E Series on Knots and Everything, Vol. 49, World Scientific, New Jersey, 2012.
    [35] M. E. Sweedler, Hopf algebras, Benjamin, New York, 1969.
    [36] H. Li, T. Ma, A construction of the Hom-Yetter-Drinfeld category, Colloq. Math., 2014, 137 (2014), 43–65. https://doi.org/10.4064/cm137-1-4
    [37] D. Yau, Module Hom-algebras, arXiv: 0812.4695v1.
    [38] C. Kassel, Quantum groups, Springer-Verlag, New York, 1995.
    [39] A. Joyal, R. Street, Braided tensor categories, Adv. Math., 102 (1993), 20–78. https://doi.org/10.1006/aima.1993.1055 doi: 10.1006/aima.1993.1055
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1501) PDF downloads(142) Cited by(2)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog