Let $ n $ be a nonnegative integer. The $ n $-th Apéry number is defined by
$ A_n: = \sum\limits_{k = 0}^n\binom{n+k}{k}^2\binom{n}{k}^2. $
Z.-W. Sun investigated the congruence properties of Apéry numbers and posed some conjectures. For example, Sun conjectured that for any prime $ p\geq7 $
$ \sum\limits_{k = 0}^{p-1}(2k+1)A_k\equiv p-\frac{7}{2}p^2H_{p-1}\pmod{p^6} $
and for any prime $ p\geq5 $
$ \sum\limits_{k = 0}^{p-1}(2k+1)^3A_k\equiv p^3+4p^4H_{p-1}+\frac{6}{5}p^8B_{p-5}\pmod{p^9}, $
where $ H_n = \sum_{k = 1}^n1/k $ denotes the $ n $-th harmonic number and $ B_0, B_1, \ldots $ are the well-known Bernoulli numbers. In this paper we shall confirm these two conjectures.
Citation: Chen Wang. Two congruences concerning Apéry numbers conjectured by Z.-W. Sun[J]. Electronic Research Archive, 2020, 28(2): 1063-1075. doi: 10.3934/era.2020058
Let $ n $ be a nonnegative integer. The $ n $-th Apéry number is defined by
$ A_n: = \sum\limits_{k = 0}^n\binom{n+k}{k}^2\binom{n}{k}^2. $
Z.-W. Sun investigated the congruence properties of Apéry numbers and posed some conjectures. For example, Sun conjectured that for any prime $ p\geq7 $
$ \sum\limits_{k = 0}^{p-1}(2k+1)A_k\equiv p-\frac{7}{2}p^2H_{p-1}\pmod{p^6} $
and for any prime $ p\geq5 $
$ \sum\limits_{k = 0}^{p-1}(2k+1)^3A_k\equiv p^3+4p^4H_{p-1}+\frac{6}{5}p^8B_{p-5}\pmod{p^9}, $
where $ H_n = \sum_{k = 1}^n1/k $ denotes the $ n $-th harmonic number and $ B_0, B_1, \ldots $ are the well-known Bernoulli numbers. In this paper we shall confirm these two conjectures.
[1] |
A Gaussian hypergeometric series evaluation and Apéry number congruences. J. Reine Angew. Math. (2000) 518: 187-212. ![]() |
[2] | Irrationalité de $\zeta(2)$ et $\zeta(3)$. Astérisque (1979) 61: 11-13. |
[3] |
Another congruence for the Apéry numbers. J. Number Theory (1987) 25: 201-210. ![]() |
[4] |
Congruences for Apéry numbers $\beta_n = \sum_{k = 0}^n\binom{n}{k}^2\binom{n+k}{k}$. Int. J. Number Theory (2020) 16: 981-1003. ![]() |
[5] | On the residues of the sums of products of the first $p-1$ numbers, and their powers, to modulus $p^2$ or $p^3$. Quart. J. Math. (1900) 31: 321-353. |
[6] |
Proof of some conjectures of Z.-W. Sun on congruences for Apéry polynomials. J. Number Theory (2012) 132: 1731-1740. ![]() |
[7] |
New congruences for sums involving Apéry numbers or central Delannoy numbers. Int. J. Number Theory (2012) 8: 2003-2016. ![]() |
[8] | Congruences arising from Apéry-type series for zeta values. Adv. Appl. Math. (2012) 49: 218-238. |
[9] |
K. Ireland and M. Rosen, A Classical Introduction to Modern Number Theory, 2$^{nd}$ edition, Graduate Texts in Math., Vol. 84, Springer-Verlag, New York, 1990. doi: 10.1007/978-1-4757-2103-4
![]() |
[10] |
Congruences for the $(p-1)$th Apéry number. Bull. Aust. Math. Soc. (2019) 99: 362-368. ![]() |
[11] | K. Ono, The Web of Modularity: Arithmetic of Coefficients of Modular Forms and $q$-Series, Amer. Math. Soc., Providence, RI, 2004. |
[12] | N. J. A. Sloane, Sequence A005259 in OEIS, http://oeis.org/A005259. |
[13] |
Congruences concerning Bernoulli numbers and Bernoulli polynomials. Discrete Appl. Math. (2000) 105: 193-223. ![]() |
[14] | Z.-W. Sun, Open conjectures on congruences, preprint, arXiv: 0911.5665v57. |
[15] |
Arithmetic theory of harmonic numbers. Proc. Amer. Math. Soc. (2012) 140: 415-428. ![]() |
[16] |
On sums of Apéry polynomials and related congruences. J. Number Theory (2012) 132: 2673-2699. ![]() |
[17] |
Arithmetic theory of harmonic numbers(II). Colloq. Math. (2013) 130: 67-78. ![]() |
[18] | Congruences of alternating multiple harmonic sums. J. Comb. Number Theory (2010) 2: 129-159. |
[19] |
Wolstenholme type theorem for multiple harmonic sums. Int. J. Number Theory (2008) 4: 73-106. ![]() |