Review

A mini-review on wastewater treatment through bioremediation towards enhanced field applications of the technology

  • Received: 31 January 2022 Revised: 21 May 2022 Accepted: 06 June 2022 Published: 04 July 2022
  • This study reviewed the use of microorganisms for bioremediation of wastewater. The aim was to ensure enhanced transfer of findings on bioremediation experiments at laboratory level for field applications, which is currently limited. Using empirical studies and specified microbes, bioremediation was shown to clear or reduce concentrations of many pollutants found in both industrial and municipal effluents with high efficacy. Findings established that bioremediation efficacy differs based on the microbes used, the characteristics of the targeted wastewater for cleansing and the physicochemical and biological characteristics of the polluted environs. It was also established that bioremediation is sometimes limited in refractory contaminant remediation due to microbe incompatibility with pollutant resulting to enzyme inhibition, generation of toxic substances and slow microbial metabolism capacity, which could prolong bioremediation processes and reduce the resultant decontamination efficacy. To overcome these challenges, this review recommended the uptake of advancements such as bio-stimulation and bioaugmentation for bettered biodegradation of contaminants. Additionally, the use of genetically engineered approaches to improve the innate characteristics of bioremediators towards recalcitrant pollutants was found to improve effectiveness. The review also suggested the use of consortiums and multiple bioremediation approaches to improve bioremediation outcomes in future. Bioremediation therefore, has high potential in cleansing wastewater pollutants and biotechnological advances could further improve its field application outcomes.

    Citation: Joan Nyika, Megersa Olumana Dinka. A mini-review on wastewater treatment through bioremediation towards enhanced field applications of the technology[J]. AIMS Environmental Science, 2022, 9(4): 403-431. doi: 10.3934/environsci.2022025

    Related Papers:

  • This study reviewed the use of microorganisms for bioremediation of wastewater. The aim was to ensure enhanced transfer of findings on bioremediation experiments at laboratory level for field applications, which is currently limited. Using empirical studies and specified microbes, bioremediation was shown to clear or reduce concentrations of many pollutants found in both industrial and municipal effluents with high efficacy. Findings established that bioremediation efficacy differs based on the microbes used, the characteristics of the targeted wastewater for cleansing and the physicochemical and biological characteristics of the polluted environs. It was also established that bioremediation is sometimes limited in refractory contaminant remediation due to microbe incompatibility with pollutant resulting to enzyme inhibition, generation of toxic substances and slow microbial metabolism capacity, which could prolong bioremediation processes and reduce the resultant decontamination efficacy. To overcome these challenges, this review recommended the uptake of advancements such as bio-stimulation and bioaugmentation for bettered biodegradation of contaminants. Additionally, the use of genetically engineered approaches to improve the innate characteristics of bioremediators towards recalcitrant pollutants was found to improve effectiveness. The review also suggested the use of consortiums and multiple bioremediation approaches to improve bioremediation outcomes in future. Bioremediation therefore, has high potential in cleansing wastewater pollutants and biotechnological advances could further improve its field application outcomes.



    加载中


    [1] Ezirim O, Okpoechi C (2020) Community-driven development strategy for sustainable infrastructure. J Human Earth Future 1: 48-59. https://doi.org/10.28991/HEF-2020-01-02-01 doi: 10.28991/HEF-2020-01-02-01
    [2] Tzanakakis V, Paranychianakis N, Angelakis A (2020) Water supply and water scarcity. Water 12: 2347. https://doi.org/10.3390/w12092347 doi: 10.3390/w12092347
    [3] Boretti A, Rosa L (2019) Reassessing the projections of the world water development report. NPJ Clean Water 2: 1-6. https://doi.org/10.1038/s41545-019-0039-9 doi: 10.1038/s41545-018-0028-4
    [4] Nyika J (2020) Climate change situation in Kenya and measures towards adaptive management in the water sector. IJESGT 11: 34-47. https://doi.org/10.4018/IJESGT.2020070103 doi: 10.4018/IJESGT.2020070103
    [5] Van Vliet M, Jones E, Florke M, et al. (2021) Global water security including surface water quality and expansions of clean water technologies. Environ Res Lett 16: 1-13. https://doi.org/10.1088/1748-9326/abbfc3 doi: 10.1088/1748-9326/abbfc3
    [6] Mateo-Sagasta J, Zadeh S, Turral, H (2017) Water pollution from agriculture: a global review. Food and Agriculture Organization and International Water Management Institute, Colombo.
    [7] Nyika J, Onyari E (2019) Hydrogeochemical analysis and spatial distribution of groundwater quality in Roundhill landfill vicinity of South Africa. Air Soil Water Res 12: 1-10. https://doi.org/10.1177/1178622119872771 doi: 10.1177/1178622119872771
    [8] Khalid S, Shahid M, Bibi I, et al. (2018) A review of environmental contamination and health risk assessment of wastewater use for crop irrigation with a focus on low and high-income countries. Int J Environ Res Public Health 15: 895. https://doi.org/10.3390/ijerph15050895 doi: 10.3390/ijerph15050895
    [9] Fayomi G. Mini S, Fayomi O, et al. (2019) A mini review on the impact of sewage disposal on environment and ecosystem. IOP Conf Ser Earth Environ Sci 331: 012040. https://doi.org/10.1088/1755-1315/331/1/012040 doi: 10.1088/1755-1315/331/1/012040
    [10] Kerich E (2020) Households drinking water sources and treatment methods options in a regional irrigation scheme. J Human Earth Future 1: 10-19. doi: 10.28991/HEF-2020-01-01-02
    [11] Omole D, Chichezie T, Akpan V (2021) Determination of volume of wastewater generated in a university campus. IOP Conf Series: Earth Environ Sci 655: 012086. https://doi.org/10.1088/1755-1315/655/1/012086 doi: 10.1088/1755-1315/655/1/012086
    [12] Ferrato N, Torretta V (2019) Waste mismanagement in developing countries: a review of global issues. Int J Environ. Res Public Health 16: 1060. https://doi.org/10.3390/ijerph16061060 doi: 10.3390/ijerph16061060
    [13] Gallelo-Valero L, Moral-Parajes E, Roman-Sanchez I (2021) Wastewater treatment costs: a research overview through bibliometric analysis. Sustainability 13: 5066. https://doi.org/10.3390/su13095066 doi: 10.3390/su13095066
    [14] Kim S, Chu K, Al-Hamadani Y, et al. (2018) Removal of contaminants of emerging concern by membranes in water and wastewater: A review. Chem Eng J 335: 896-914. https://doi.org/10.1016/j.cej.2017.11.044 doi: 10.1016/j.cej.2017.11.044
    [15] Mrozik A (2021) Microbial action in wastewater and sludge. Water 13: 846. https://doi.org/10.3390/w13060846 doi: 10.3390/w13060846
    [16] Nyika J, Onyari E, Dinka M, et al. (2021) A review on methods of assessing pollution levels from landfills in South Africa. Int J Environ. Waste Manage 28: 436-455. https://doi.org/10.1504/IJEWM.2021.118859 doi: 10.1504/IJEWM.2021.118859
    [17] Sharma P, Kumar S (2021) Bioremediation of heavy metals from industrial effluents by endophytes and their metabolic activity: recent advances. Bioresour Technol 339: 125589. https://doi.org/10.1016/j.biortech.2021.125589 doi: 10.1016/j.biortech.2021.125589
    [18] Wu G, Yin Q (2020) Microbial niche nexus sustaining biological wastewater treatment. NPJ Clean Water 33: 1-6. https://doi.org/10.1038/s41545-020-00080-4 doi: 10.1038/s41545-020-00080-4
    [19] Buaisha M, Balku S, Yaman S (2020) Heavy metal removal investigation in conventional activated sludge. Civ Eng J 6: 470-478. http://dx.doi.org/10.28991/cej-2020-03091484 doi: 10.28991/cej-2020-03091484
    [20] Mirra R, Ribarov C, Valchev D, et al. (2020) Towards energy efficient onsite wastewater treatment. Civ Eng J 6: 1218-1226. https://doi.org/10.28991/cej-2020-03091542 doi: 10.28991/cej-2020-03091542
    [21] Chirisa I, Bandako E, Matamanda A, et al. (2017) Decentralized domestic wastewater systems in developing countries: the case study of Harare (Zimbabwe). Appl Water Sci 7: 1069-1078. https://doi.org/10.1007/s13201-016-0377-4 doi: 10.1007/s13201-016-0377-4
    [22] Furrer V (2018) Remote monitoring of on-site wastewater treatment plants by means of low-maintenance sensors data collection and interpretation from a SBR in operation. MSc thesis, ETH Zurich.
    [23] Schneider Y, Carbajal P, Furrer V, et al. (2019) Beyond signal quality: The value of unmaintained pH, dissolved oxygen, and oxidation-reduction potential sensors for remote performance monitoring of on-site sequencing batch reactors. Water Res 161: 639-651. https://doi.org/10.1016/j.watres.2019.06.007 doi: 10.1016/j.watres.2019.06.007
    [24] Armah E, Chetty M, Adedeji A, et al. (2020) Emerging trends in wastewater treatment technologies: the current perspective. https://doi.org/10.5772/intechopen.93898
    [25] Rout P, Zhang T, Bhunia P, et al. (2021) Treatment technologies for emerging contaminants in wastewater treatment plants: a review. Sci Total Environ 753: 141990. https://doi.org/10.1016/j.scitotenv.2020.141990 doi: 10.1016/j.scitotenv.2020.141990
    [26] He S, Zhong L, Duan J, Feng Y, et al. (2017) Bioremediation of wastewater by iron oxide biochar nanocomposites loaded with photosynthetic bacteria. Front Microbiol 8: 823. https://doi.org/10.3389/fmicb.2017.00823 doi: 10.3389/fmicb.2017.00823
    [27] Kaleeswari K, Johnson T, Vijayalakshmi C (2018) Influencing factors on water treatment plant performance analysis using fuzzy logic technique. Int J Pure Appl Math 118: 29-38.
    [28] Nyika J (2021) Tolerance of microorganisms to heavy metals. In Recent advancements in bioremediation of metal contaminants 2021: 19-35. https://doi.org/10.4018/978-1-7998-4888-2.ch002 doi: 10.4018/978-1-7998-4888-2.ch002
    [29] Sharma I (2021) Bioremediation techniques for polluted environment: concept, advantages, limitations and prospects. In Trace metals in the environment-new approaches and recent advances. https://doi.org/10.5772/intechopen.90453 doi: 10.5772/intechopen.90453
    [30] Sharma P, Singh P (2021) Identification and profiling of microbial community from industrial sludge. Arch Microbiol 204: 234. https://doi.org/10.1007/s00203-022-02831-y doi: 10.1007/s00203-022-02831-y
    [31] Seyki-Out A, Smith A (2020) Bioremediation: how to decrease greenhouse gas emissions through cattle. URNCST Journal 4: 1-6. https://doi.org/10.26685/urncst.192 doi: 10.26685/urncst.192
    [32] Arora N (2018) Bioremediation: a green approach for restoration of polluted ecosystem. Environ Sustain 1: 305-307. https://doi.org/10.1007/s42398-018-00036-y doi: 10.1007/s42398-018-00036-y
    [33] Lorenzo V (2017) Seven microbial bio-processes to help the planet. Microb Biotechnol 10: 995-998. https://doi.org/10.1111%2F1751-7915.12816 doi: 10.1111/1751-7915.12816
    [34] Sharma J (2019) Advantages and limitations of in situ methods of bioremediation. Recent Adv Biol Med 5: 955923. http://dx.doi.org/10.18639/RABM.2019.955923 doi: 10.18639/RABM.2019.955923
    [35] Martinez-Gallardo M, Lopez M, Jurado M, et al. (2020) Bioremediation of olive mill wastewater sediments in evaporation ponds through in situ composting assisted by bioaugmentation. Sci Total Environ 703: 135537. https://doi.org/10.1016/j.scitotenv.2019.135537 doi: 10.1016/j.scitotenv.2019.135537
    [36] Srivastava J, Naraian R, Kalra S, et al. (2014) Advances in microbial bioremediation and factors influencing the process. Int J Environ Sci Technol 11: 1787-1800. https://doi.org/10.1007/s13762-013-0412-z doi: 10.1007/s13762-013-0412-z
    [37] Boopathy R (2000) Factors limiting bioremediation technologies. Bioresour Technol 74: 63-67. https://doi.org/10.1016/S0960-8524(99)00144-3 doi: 10.1016/S0960-8524(99)00144-3
    [38] Aragaw T (2020) Functions of various bacteria for specific pollutants degradation and their application in wastewater treatment: a review. Int J Environ Sci Technol 18: 2063-2076. https://doi.org/10.1007/s13762-020-03022-2 doi: 10.1007/s13762-020-03022-2
    [39] Igiri B, Okoduwa S, Idoko G (2018) Toxicity and bioremediation of heavy metals contaminated ecosystem from tannery wastewater: A review. J Toxicol 2018. https://doi.org/10.1155/2018/2568038 doi: 10.1155/2018/2568038
    [40] Akpor O, Otohinoyi D, Olaolu T, et al. (2014) Pollutants in wastewater effluents: impacts and remediation processes. Int J Environ Res Earth Sci 3: 50-59.
    [41] Abatenh E, Gizaw B, Tsegaye Z, et al. (2017) The role of microorganisms in bioremediation- a review. Open J Environ Biol 1: 38-46. https://doi.org/10.17352/ojeb.000007 doi: 10.17352/ojeb.000007
    [42] Goswami M, Chakraborty P, Mukherjee K, et al. (2018) Bioaugmentation and biostimulation: a potential strategy for environmental remediation. J Microbiol Exp 6: 223-231. https://doi.org/10.15406/jmen.2018.06.00219 doi: 10.1186/s40168-018-0606-1
    [43] Abdulsalam S, Bugaje M, Adefila S, et al. (2010) Comparison of biostimulation and bioaugmentation for remediation of soil contaminated with spent motor oil. Braz Arch Biol Technol 52: 747-754. http://dx.doi.org/10.1007/BF03326208 doi: 10.1007/BF03326208
    [44] Das N, Chandran P (2010) Microbial degradation of petroleum hydrocarbon contaminants: an overview. Biotechnol Res Int 2010: 1-14. https://doi.org/10.4061/2011/941810 doi: 10.4061/2011/941810
    [45] Ogbeh G, Tsokar T, Salifu E (2018) Optimization of nutrients requirements for bioremediation of spent-engine oil contaminated soils. Environ Eng Res 24: 484-494. https://doi.org/10.4491/eer.2018.237 doi: 10.4491/eer.2018.237
    [46] Bahmani F, Ataei S, Mikaill A (2018) The effect of moisture content variation on the bioremediation of hydrocarbon contaminated soils: modelling and experimental investigation. J. Environ Anal Chem 5: 1000236. https://doi.org/10.4172/2380-2391.1000236 doi: 10.4172/2380-2391.1000236
    [47] Ahmad F, Zhu D, Sun J (2021) Bacterial chemotaxis: a way forward to aromatic compounds biodegradation. Environ Sci Eu 32: 1-18. https://doi.org/10.1186/s12302-020-00329-2 doi: 10.1186/s12302-020-00329-2
    [48] Ojha N, Karn R, Abbas S, Bhugra S (2021) Bioremediation of industrial wastewater: a review. IOP Conf Series: Earth Environ Sci 796: 012012. https://doi.org/10.1088/1755-1315/796/1/012012 doi: 10.1088/1755-1315/796/1/012012
    [49] Pandey G, Jain R (2002) Bacterial chemotaxis toward environmental pollutants: role in bioremediation. Appl Environ Microbiol 68: 5789-5795. https://doi.org/10.1128%2FAEM.68.12.5789-5795.2002 doi: 10.1128/AEM.68.12.5789-5795.2002
    [50] Gaikwad G, Wate S, Ramteke D, et al. (2014) Development of microbial consortia for the effective treatment of complex wastewater. J Bioremed Biodeg 5: 1-6. http://dx.doi.org/10.4172/2155-6199.1000227 doi: 10.4172/2155-6199.1000227
    [51] Wang Q, Yang M, Song X, et al. (2019) Aerobic and anaerobic biodegradation off 1, 2-dibromoethane by a microbial consortium under simulated groundwater conditions. Int. J. Environ Res Public Health 16: 3775. https://doi.org/10.3390/ijerph16193775 doi: 10.3390/ijerph16193775
    [52] Efeovbokhan V, Hymore F, Ayoola A, et al. (2014) Comparison of aerobic and anaerobic bioremediation of polluted water samples. Am Int J Contemp Res 4: 120-127.
    [53] Coelho L, Rezende H, Coelho L, et al (2015) Bioremediation of polluted waters using microorganisms. Advances in bioremediation of wastewater and polluted soil 10: 60700. http://dx.doi.org/10.5772/60770 doi: 10.5772/60770
    [54] Bhandari S, Poudel D, Marahatha R, et al. (2021) Microbial enzymes used in bioremediation. J Chem 2021. https://doi.org/10.1155/2021/8849512 doi: 10.1155/2021/8849512
    [55] Guengerich F (2010) Mechanisms of cytochrome P450 catalyzed oxidation. ACS Catal 8: 10964-10976. https://doi.org/10.1021%2Facscatal.8b03401 doi: 10.1021%2Facscatal.8b03401
    [56] Shraddha R, Shekher S, Sehgal S, et al. (2011) Laccase: microbial sources, production, purification and potential biotechnological applications. Enzyme Res 2011: 1-11. https://doi.org/10.4061/2011/217861 doi: 10.4061/2011/217861
    [57] Dotaniya M, Aparna K, Dotaniya C, et al. (2019) Role of soil enzymes in sustainable crop production. Enzyme Food Biotechnol 2019: 569-589. https://doi.org/10.1016/B978-0-12-813280-7.00033-5 doi: 10.1016/B978-0-12-813280-7.00033-5
    [58] Razzaq A. Shamsi S, Ali A, et al. (2019) Microbial proteases applications. Front Bioeng Biotechnol 7: 110. https://doi.org/10.3389%2Ffbioe.2019.00110 doi: 10.3389/fbioe.2019.00110
    [59] Alneyadi A, Rauf M, Ashraf S (2018) Oxidoreductases for the remediation of organic pollutants in water - a critical review. Crit Rev Biotechnol 38: 971-988. https://doi.org/10.1080/07388551.2017.1423275 doi: 10.1080/07388551.2017.1423275
    [60] Barber E, Liu Z, Smith S (2020) Organic contaminant biodegradation by oxidoreductase enzymes in wastewater treatment. Microorganisms 8: 122. https://doi.org/10.3390%2Fmicroorganisms8010122 doi: 10.3390/microorganisms8010122
    [61] Dzionek A, Wojcieszynska D, Guzik U (2016) Natural carriers in bioremediation: a review. Electronic J Biotechnol 23: 28-36. https://doi.org/10.1016/j.ejbt.2016.07.003 doi: 10.1016/j.ejbt.2016.07.003
    [62] Saha P, Rao B (2021) Immobilization as a powerful bioremediation tool for abatement of dye pollution: a review. Environ Rev 29: 1-23. https://doi.org/10.1139/er-2020-0074 doi: 10.1139/er-2019-0072
    [63] Mehrotra T, Dev S, Banerjee A, et al. (2021) Use of immobilized bacteria for environmental bioremediation: a review. J Environ Chem Eng 9: 105920. https://doi.org/10.1016/j.jece.2021.105920 doi: 10.1016/j.jece.2021.105920
    [64] Andreolli M, Lampis S, Brignoli P (2015) Bioaugmentation and biostimulation as strategies for the bioremediation of a burned woodland soil contaminated by toxic hydrocarbons: a comparative study. J Environ Manage 153: 121-131. https://doi.org/10.1016/j.jenvman.2015.02.007 doi: 10.1016/j.jenvman.2015.02.007
    [65] Cortes M, de Carvalho C (2015) Effect of carbon sources on lipid accumulation in Rhodococcus cells. Biochem. Eng J 94: 100-105. https://doi.org/10.1016/j.bej.2014.11.017 doi: 10.1016/j.bej.2014.11.017
    [66] Sharma P (2022) Role and significance of biofilm-forming microbes in phytoremediation-a review. Environ Technol Inno 25: 102182. https://doi.org/10.1016/j.eti.2021.102182 doi: 10.1016/j.eti.2021.102182
    [67] Sharma P, Chaturvedi P, Chandra R, et al. (2022) Identification of heavy metals tolerant Brevundimonas sp. from rhizospheric zone of Saccharum Munja L. and their efficacy in in-situ phytoremediation. Chemosphere 295: 133823. https://doi.org/10.1016/j.chemosphere.2022.133823 doi: 10.1016/j.chemosphere.2022.133823
    [68] Dixit R, Malaviya D, Pandiyan K, et al. (2015) Bioremediation of heavy metals from soil and aquatic environment: an overview of principles and criteria of fundamental processes. Sustainability 7: 2189-2212. https://doi.org/10.3390/su7022189 doi: 10.3390/su7022189
    [69] Wu G, Kang H, Zhang X, et al. (2010) A critical review on the bio-removal of hazardous heavy metals from contaminated soils: issues, progress, eco-environmental concerns and opportunities. J Hazard Mater 174: 1-8. https://doi.org/10.1016/j.jhazmat.2009.09.113 doi: 10.1016/j.jhazmat.2009.09.113
    [70] Ramasamy K, Kamaludeen S, Parwin B (2007) Bioremediation of metals microbial processes and techniques. In Environmental Bioremediation Technologies 2007: 173-187. https://doi.org/10.1007/978-3-540-34793-4_7 doi: 10.1007/978-3-540-34793-4_7
    [71] Kumaran N, Sundaramanicam A, Bragadeeswaran S (2011) Adsorption studies on heavy metals by isolated cyanobacterial strain (nostoc sp.) from Uppanar estuarine water, southeast coast of India. J Appl Sci Res 7: 1609-1615.
    [72] Mane P, Bhosle A (2012) Bioremoval of some metals by living algae Spirogyra sp. and Spirullina sp. from aqueous solution. Int J Environ Res 6: 571-576. https://dx.doi.org/10.22059/ijer.2012.527 doi: 10.22059/ijer.2012.527
    [73] Ashokkumar P, Loashini V, Bhavya V (2017) Effect of pH, temperature and biomass on biosorption of heavy metals by Sphaerotilus natans. IJMM 6: 32-38. http://dx.doi.org/10.1016/S0304-386X(00)00195-X doi: 10.1016/S0304-386X(00)00195-X
    [74] Muneer B, Iqbal M, Shakoori F, et al. (2013) Tolerance and biosorption of mercury by microbial consortia: potential use in bioremediation of wastewater. Pak J Zool 45: 247-254.
    [75] Benazir J, Suganthi R, Rajvel D, et al. (2010) Bioremediation of chromium in tannery effluent by microbial consortia. Afr J Biotechnol 9: 3140-3143.
    [76] De J, Ramaiah N, Vardanyan L (2008) Detoxification of toxic heavy metals by marine bacteria highly resistant to mercury. Mar Biotechnol 10: 471-477. https://doi.org/10.1007/s10126-008-9083-z doi: 10.1007/s10126-008-9083-z
    [77] Bhattacharya M, Guchhait S, Biswas D, et al. (2015) Waste lubricating oil removal in a batch reactor by mixed bacterial consortium: a kinetic study. Bioprocess Biosyst Eng 38: 2095-2106. https://doi.org/10.1007/s00449-015-1449-9 doi: 10.1007/s00449-015-1449-9
    [78] Kumar R, Bhatia D, Singh R, et al. (2011) Sorption of heavy metals from electroplating effluent using immobilized biomass Trichoderma viride in a continuous packed-bed column. Int Biodeterior Biodegradation 65: 1133-1139. https://doi.org/10.1016/j.ibiod.2011.09.003 doi: 10.1016/j.ibiod.2011.09.003
    [79] Marzan W, Hossain M, Mina A, et al. (2017) Isolation and biochemical characterization of heavy-metal resistant bacteria from tannery effluent in Chittagong city, Bangladesh: Bioremediation viewpoint. Egypt J Aquat Res 43: 65-74. https://doi.org/10.1016/j.ejar.2016.11.002 doi: 10.1016/j.ejar.2016.11.002
    [80] Bharagava N, Mishra S (2018) Hexavalent chromium reduction potential of Cellulosimicrobium sp. isolated from common effluent treatment plant of tannery industries. Ecotoxicol Environ Saf 147: 102-109. https://doi.org/10.1016/j.ecoenv.2017.08.040 doi: 10.1016/j.ecoenv.2017.08.040
    [81] Zakaria A, Zakaria Z, Surif S, et al. (2007) Hexavalent chromium reduction by Acinetobacter haemolyticus isolated from heavy-metal contaminated wastewater. J Hazard Mater 146: 30-38. https://doi.org/10.1016/j.jhazmat.2006.11.052 doi: 10.1016/j.jhazmat.2006.11.052
    [82] Gunasundari D, Muthukumar K (2013) Simultaneous Cr (Ⅵ) reduction and phenol degradation using Stenotrophomonas sp. isolated from tannery effluent contaminated soil. ESPR 20: 6563-6573. https://doi.org/10.1007/s11356-013-1718-6 doi: 10.1007/s11356-013-1718-6
    [83] Gavrilescu M (2004) Removal of heavy metals from the environment by biosorption. Eng Life Sci. 4: 219-232. http://dx.doi.org/10.1002/elsc.200420026 doi: 10.1002/elsc.200420026
    [84] Vijayaraghavan K, Yun YS (2008) Bacterial biosorbents and biosorption. Biotechnol Adv 26: 266-291. https://doi.org/10.1016/j.biotechadv.2008.02.002 doi: 10.1016/j.biotechadv.2008.02.002
    [85] Godlewska-Zyłkiewicz B (2006) Microorganisms in inorganic chemical analysis. Anal Bioanal Chem Res 384: 114-123. https://doi.org/10.1007/s00216-005-0142-2 doi: 10.1007/s00216-005-0142-2
    [86] Jha S, Dikshit S, Pandy G (2011) Comparative study of agitation rate and stationary phase for the removal of Cu2+ by A. lentulus. Int J Pharm Biol Sci 2: 208-211.
    [87] Pardo R, Herguedas M, Barrado E, et al. (2003) Biosorption of cadmium, copper, lead and zinc by inactive biomass of Pseudomonas putida. Anal Bioanal Chem 376: 26-32. https://doi.org/10.1007/s00216-003-1843-z doi: 10.1007/s00216-003-1843-z
    [88] Viti C, Pace A, Giovannetti L (2003) Characterization of Cr (Ⅵ)-resistant bacteria isolated from chromium-contaminated soil by tannery activity. Curr Microbiol 46: 1-5. https://doi.org/10.1007/s00284-002-3800-z doi: 10.1007/s00284-002-3800-z
    [89] Kaur S, Roy A (2020) Bioremediation of heavy metals from wastewater using nanomaterials. Environ Dev Sustain 23: 9617-9640. https://doi.org/10.1007/s10668-020-01078-1 doi: 10.1007/s10668-020-01078-1
    [90] Wang S, Liu T, Xiao X, et al. (2021) Advances in microbial remediation for heavy metal treatment: a mini review. J Leather Sci Eng 3: 1-10. https://doi.org/10.1186/s42825-020-00042-z doi: 10.1186/s42825-020-00042-z
    [91] Selvi A, Rajasekar A, Theerthagiri J, et al. (2019) Integrated remediation processes toward heavy metal removal/recovery from various environs- a review. Front Environ Sci 7: 1-15. https://doi.org/10.3389/fenvs.2019.00066 doi: 10.3389/fenvs.2019.00001
    [92] Gul U (2018) Bioremediation of dyes in textile wastewater. Derleme 11: 24-28.
    [93] Radia J, Romana S (2019) Biodegradation of synthetic dyes of textile effluent by microorganisms: an environmental and economically sustainable approach. Eur J Microbiol Immunol 9: 114-118. https://doi.org/10.1556%2F1886.2019.00018 doi: 10.1556/1886.2019.00018
    [94] Sneha U, Poornima R, Sridhar S (2013) Decolorization of synthetic textile dyes using Pseudomonas putida. J Chem Pharm Res 5: 219-225.
    [95] Kalyani D, Telke A, Dhanve R, et al. (2009) Eco-friendly biodegradation and detoxification of Reactive Red 2 textile dye by newly isolated Pseudomonas sp. SUK1. J Hazard Mater 163: 735-742. https://doi.org/10.1016/j.jhazmat.2008.07.020 doi: 10.1016/j.jhazmat.2008.07.020
    [96] Aftab U, Kan M, Mahfooz M, et al. (2011) Decolorization and degradation of textile azo dyes by Corynebacterium sp. isolated from industrial effluent. Pak J Zool 43: 1-8.
    [97] Sivaraj R, Dorthy C, Venckatesh R (2011) Isolation, characterization and growth kinetics of bacteria metabolizing textile effluent. J Biosci Technol 2: 324-330. https://doi.org/10.12691/ijebb-4-2-2 doi: 10.12691/ijebb-4-2-2
    [98] Shah M, Patel K, Nair S, et al. (2013) An innovative approach to biodegradation of textile dye (remazol black B) by Bacillus Spp. Int J Environ Bioremediat Biodegrad 1: 43-48. http://dx.doi.org/10.12691/ijebb-1-2-2 doi: 10.12691/ijebb-1-2-2
    [99] Jaiswal S, Gomashe A (2017) Bioremediation of textile azo dyes by newly isolated Bacillus sp. from dye contaminated soil. Int J Biotechnol Biochem 13: 147-153.
    [100] Gul U (2013) The Treatment of dyeing wastewater including reactive dyes (Reactive Red RB, Reactive Black B, Remazol Blue) and Methylene Blue by fungal biomass. Water SA 39: 593-598. https://doi.org/10.4314/wsa.v39i5.2 doi: 10.4314/wsa.v39i5.2
    [101] Steeve M, Christiane A, Jean-Bosco S, et al. (2014). Discoloration and biodegradation of two dyes by white-rot fungi Perreniporia tephropora MUCL 47500 isolated in Gabon. Int J Curr Microbiol Appl Sci 3: 731-741.
    [102] Ramalingam S, Saraswathy N, Shanmugapriya S, et al. (2010) Decolorization of textile dyes by Aspergillus tamari, mixed fungal culture and Peniceillium purpurogenum. J Sci Ind Res 69: 151-153.
    [103] Ngieng N, Zulkharnain A, Roslan H, et al. (2013) Decolorization of synthetic dyes by endophytic fungal flora isolated from Senduduk plant (Melastoma malabathricum). International Scholarly Research Notices 2013. https://doi.org/10.5402/2013/260730 doi: 10.5402/2013/260730
    [104] Cheng W, Sim H, Ahmad S, et al. (2016) Characterization of an azo-dye-degrading white rot fungus isolated from Malaysia. Mycosphere 7: 560-569. doi: 10.5943/mycosphere/7/5/3
    [105] Barathi S, Vasudevan N (2001) Utilization of petroleum hydrocarbons by Pseudomonas fluorescens isolated from a petroleum-contaminated soil. Environ Int 26: 413-416. https://doi.org/10.1016/S0160-4120(01)00021-6 doi: 10.1016/S0160-4120(01)00021-6
    [106] Fritsche W, Hofrichter M (2000) Aerobic degradation by microorganisms. Environmental Processes- Soil Decontamination 2000: 146-155.
    [107] Karlapudi A, Venkateswarulu T, Tammineedi J, et al. (2018) Role of biosurfactants in bioremediation of oil pollution- a review. Petroleum 4: 241. https://doi.org/10.1016/j.petlm.2018.03.007 doi: 10.1016/j.petlm.2018.03.007
    [108] Xu X, Liu W, Tian S, et al. (2018) Petroleum hydrocarbon-degrading bacteria for the remediation of oil pollution under aerobic conditions: a perspective analysis. Front Microbiol 9: 1-11. https://doi.org/10.3389/fmicb.2018.02885 doi: 10.3389/fmicb.2018.00001
    [109] Kleindienst S, Paul H, Joye B (2015) Using dispersants after oil spills: impacts on the composition and activity of microbial communities. Nat Rev Microbiol 13: 388-396. http://dx.doi.org/10.1038/nrmicro3452 doi: 10.1038/nrmicro3452
    [110] Tao K, Liu X, Chen X, et al. (2017) Biodegradation of crude oil by a defined co-culture of indigenous bacterial consortium and exogenous Bacillus subtilis Bioresour. Technol 224: 327-332. https://doi.org/10.1016/j.biortech.2016.10.073 doi: 10.1016/j.biortech.2016.10.073
    [111] Wang C, Liu X, Guo J, et al. (2018) Biodegradation of marine oil spill residues using aboriginal bacterial consortium based on Penglai 19-3 oil spill accident. China. Ecotoxicol Environ Saf 159: 20-27. https://doi.org/10.1016/j.ecoenv.2018.04.059 doi: 10.1016/j.ecoenv.2018.04.059
    [112] Pedro P, Francisco J, Joao F, et al. (2014) DNA damage induced by hydroquinone can be prevented by fungal detoxification. Toxicol Rep 1: 1096-1105. https://doi.org/10.1016%2Fj.toxrep.2014.10.024 doi: 10.1016/j.toxrep.2014.10.024
    [113] Safiyanu I, Isah A, Abubakar U, et al. (2015) Review on comparative study on bioremediation for oil spills using microbes. Res J Pharm Biol Chem Sci 6: 783-790.
    [114] Simarro R, Gonzalez N, Bautista L, et al. (2013) Assessment of the efficiency of in situ bioremediation techniques in a creosote polluted soil: change in bacterial community. J Hazard Mater 262: 158-167. https://doi.org/10.1016/j.jhazmat.2013.08.025 doi: 10.1016/j.jhazmat.2013.08.025
    [115] Hesham A, Khan S, Tao Y, et al. (2012) Biodegradation of high molecular weight PAHs using isolated yeast mixtures: application of metagenomic methods for community structure analyses. Environ Sci Pollut Res Int 19: 3568-3578. https://doi.org/10.1007/s11356-012-0919-8 doi: 10.1007/s11356-012-0919-8
    [116] Yadav M, Singh S, Sharma J, et al. (2011) Oxidation of polyaromatic hydrocarbons in systems containing water miscible organic solvents by the lignin peroxidase of Gleophyllum striatum MTCC-1117. Environ Technol 32: 1287-1294. https://doi.org/10.1080/09593330.2010.535177 doi: 10.1080/09593330.2010.535177
    [117] Aranda E, Ullrich R, Hofrichter M (2010) Conversion of polycyclic aromatic hydrocarbons, methyl naphthalenes and dibenzofuran by two fungal peroxygenases. Biodegradation 21: 267-281. https://doi.org/10.1007/s10532-009-9299-2 doi: 10.1007/s10532-009-9299-2
    [118] Erika A, Vivian B, Claudia C, et al. (2013) Biodegradation of phenol in static cultures by Penicillium chrysogenum erk1: catalytic abilities and residual phytotoxicity. Rev Argent Microbiol 44: 113-121.
    [119] Kehinde F, Isaac S (2016) Effectiveness of augmented consortia of Bacillus coagulans, Citrobacter koseri and Serratia ficaria in the degradation of diesel polluted soil supplemented with pig dung. Afr J Microbiol Res 10: 1637-1644. http://dx.doi.org/10.5897/AJMR2016.8249 doi: 10.5897/AJMR2016.8249
    [120] Abha S, Vinay K, Srivastava J (2013) Assessment of bioremediation of oil and phenol contents in refinery waste water via bacterial consortium. J Pet Environ Biotechnol 4: 1-4. http://dx.doi.org/10.4172/2157-7463.1000145 doi: 10.4172/2157-7463.1000145
    [121] Aliaa M, Eltayeb K, Mostafa A, et al. (2016) Biodegradation of industrial oil-polluted wastewater in Egypt by bacterial consortium immobilized in different types of carriers. Pol J Environ Stud 25: 1901-1909. https://doi.org/10.15244/pjoes/62301 doi: 10.15244/pjoes/62301
    [122] Sukumar S, Nirmala P (2016) Screening of diesel oil degrading bacteria from petroleum hydrocarbon contaminated soil. Int J Adv Res Biol Sci 3: 18-22. doi: 10.22192/ijarbs.2016.03.10.004
    [123] Szulc A, Ambrożewicz D, Sydow M, et al. (2014) The influence of bioaugmentation and biosurfactant addition on bioremediation efficiency of diesel-oil contaminated soil: feasibility during field studies. J Environ Manage 132: 121-128. https://doi.org/10.1016/j.jenvman.2013.11.006 doi: 10.1016/j.jenvman.2013.11.006
    [124] Divya M, Aanand S, Srinivasan A, et al. (2015) Bioremediation-an ecofriendly tool for effluent treatment: a review. International J Appl Res 1: 530-537.
    [125] Maulin P (2017) Environmental bioremediation of industrial effluent. J Mol Biol Biotechnol 2: 1-3.
    [126] Dubey S, Dubey J, Mehra S, et al. (2011) Potential use of cyanobacterial species in bioremediation of industrial effluents. Afr J Biotechnol 10: 1125-1132. https://doi.org/10.5897/AJB10.908 doi: 10.5897/AJB10.908
    [127] Brar A, Kumar M, Vivekanand V, et al. (2017) Photoautotrophic microorganisms and bioremediation of industrial effluent: current status and future prospects. 3 biotech 7: 18. https://doi.org/10.1007/s13205-017-0600-5 doi: 10.1007/s13205-017-0600-5
    [128] Murugesan K (2003) Bioremediation of paper and pulp mill effluents. Indian J Exp Biol 41: 1239-1248.
    [129] Kumar A, Chandra R (2020) Ligninolytic enzymes and its mechanisms for degradation of lignocellulosic waste in environment. Heliyon 6: e03170. https://doi.org/10.1016/j.heliyon.2020.e03170 doi: 10.1016/j.heliyon.2020.e03170
    [130] Annika D, Arvind R, Sayali R (2012) Decolorization of textile dyes and biological stains by bacterial strains isolated from industrial effluents. Adv Appl Sci Res 3: 2660-2671.
    [131] Mahmood R, Shariff R, Ali S, et al. (2013). Bioremediation of textile effluents by indigenous bacterial consortia and its effects on zea mays L.CVC 1415. J Anim Plant Sci 23:1193-1199.
    [132] Costa S, Dedola D, Pellizzari S, et al. (2017) Lignin biodegradation in pulp and paper mill wastewater by selected white rot fungi. Water 9: 935. https://doi.org/10.3390/w9120935 doi: 10.3390/w9120935
    [133] Chandra R (2001) Microbial decolorization of pulp and paper mill effluent in presence of nitrogen and phosphorus by activated sludge process. J Environ Biol 22: 23.
    [134] Maghsoodi V, Samadi A, Ghobadi Z (2007) Biodegradation of effluents from dairy plat by bacterial Isolates. Iran J Chem Chem Eng 26: 55-59.
    [135] Sangitha P, Aruna U, Maggirwar R (2012) Biodegradation of tannery effluent by using tannery effluent isolates. Int Multidiscip Res J 2: 43-44. http://dx.doi.org/10.33765/thate.10.3.2 doi: 10.33765/thate.10.3.2
    [136] Krishnaveni R, Pramiladevi Y, Rao S (2013) Bioremediation of steel industrial effluents using soil microorganisms. Int J Adv Biotechnol Res 4: 51-56.
    [137] Buvaneswari S, Muthukumaran M, Damodarkumar S, et al. (2013) Isolation and identification of predominant bacteria to evaluate the bioremediation in sugar mill effluent. Int J Curr Sci 5: 123-132.
    [138] Kedia R, Sharma A (2015) Bioremediation of industrial effluents using Arbuscular mycorrhizal fungi. Biosci Biotechnol Res Asia 12: 197-200. http://dx.doi.org/10.13005/bbra/1651 doi: 10.13005/bbra/1651
    [139] Von Canstein H, Li Y, Timmis K, et al. (1999) Removal of mercury from Chloralkali electrolysis wastewater by a mercury resistant Pseudomonal putida strain. Appl Environ, Microbiol 65: 5279-5284. https://doi.org/10.1128%2Faem.65.12.5279-5284.1999 doi: 10.1128/AEM.65.12.5279-5284.1999
    [140] Spina F, Varese G (2016) Fungal bioremediation of emerging micropollutants in municipal wastewaters. Fungal Biol 4: 115-141. https://doi.org/10.1007/978-3-319-42852-9_6 doi: 10.1007/978-3-319-42852-9_6
    [141] Hesnawi R, Dahmani K, Al-Swayah A, et al. (2014) Biodegradation of municipal wastewater with local and commercial bacteria. Procedia Eng 70: 810-814. https://doi.org/10.1016/j.proeng.2014.02.088 doi: 10.1016/j.proeng.2014.02.088
    [142] Nzila A, Razzak S, Zhu J (2016) Bioaugmentation: an emerging strategy of industrial wastewater treatment for reuse and discharge. Int J Environ Res Public Health 13: 846. https://doi.org/10.3390%2Fijerph13090846 doi: 10.3390/ijerph13090846
    [143] Qu Y, Zhang R, Ma F, et al. (2011) Bioaugmentation with a novel alkali-tolerant Pseudomonas strain for alkaline phenol wastewater treatment in sequencing batch reactor. World J Microbiol Biotechnol 27: 1919-1926. https://doi.org/10.1007/s11274-011-0653-2 doi: 10.1007/s11274-011-0653-2
    [144] Chen Y, Lin L, Jones G, et al. (2009) Enhancing biodegradation of wastewater by microbial with fractional factorial design. J Hazard Mater 171: 948-953. https://doi.org/10.1016/j.jhazmat.2009.06.100 doi: 10.1016/j.jhazmat.2009.06.100
    [145] Mongkolthanaruk W, Saovanee D (2002) Biodegradation of lipid-rich wastewater by a mixed bacteria consortium. Int Biodeterior Biodegradation 50: 101-105. https://doi.org/10.1016/S0964-8305(02)00057-4 doi: 10.1016/S0964-8305(02)00057-4
    [146] Mizuno H, Hirai H, Kawai S, et al. (2009) Removal of estrogenic activity of iso-butylparaben and n-butylparaben by laccase in the presence of 1-hydroxybenzotriazole. Biodegradation 20: 533-539. https://doi.org/10.1007/s10532-008-9242-y doi: 10.1007/s10532-008-9242-y
    [147] Haroune L, Saibi S, Bellenger J, et al. (2014) Evaluation of the efficiency of Trametes hirsuta for the removal of multiple pharmaceutical compounds under low concentrations relevant to the environment. Bioresour Technol 171: 199-202. https://doi.org/10.1016/j.biortech.2014.08.036 doi: 10.1016/j.biortech.2014.08.036
    [148] Sabuda M, Rosenfeld C, DeJournett T, et al. (2020) Fungal bioremediation of selenium-contaminated industrial and municipal wastewaters. Front Microbiol 11: 2105. https://doi.org/10.3389/fmicb.2020.02105 doi: 10.3389/fmicb.2020.02105
    [149] Nag C, Toppo K, Nayaka S, et al. (2019) Bioremediation of municipal sewage using potential microalgae. In Application of Microalgae in Wastewater Treatment 2019: 121-144. http://dx.doi.org/10.1007/978-3-030-13913-1_7
    [150] Abdel-Raouf N, Al-Homaidan A, Ibraheem I (2012) Microalgae and wastewater treatment. Saudi J Biol Sci 3: 257-275. https://doi.org/10.1016/j.sjbs.2012.04.005 doi: 10.1016/j.sjbs.2012.04.005
    [151] Ansari A, Khoja A, Nawar A, et al. (2017) Wastewater treatment by local microalgae strains for CO2 sequestration and biofuel production. Appl Water Sci 7: 4151-4158. https://doi.org/10.1007/s13201-017-0574-9 doi: 10.1007/s13201-017-0574-9
    [152] Shi J, Podola B, Melkonian M (2007) Removal of nitrogen and phosphorus from wastewater using microalgae immobilized on twin layers: an experimental study. J Appl Phycol 19: 417-423. http://dx.doi.org/10.1007/s10811-006-9148-1 doi: 10.1007/s10811-006-9148-1
    [153] Saxena A, Gupta V, Saxena S (2020) Bioremediation: a green approach towards the treatment of sewage waste. J Phytol Res 33: 171-187. https://doi.org/10.1007/s42398-018-00036-y doi: 10.1007/s42398-018-00036-y
    [154] Izadi A, Hosseinia M, Darzia G, et al. (2019) Performance of an integrated fixed bed membrane bioreactor applied to pollutant removal from paper recycling wastewater. Water Resour Ind 21: 100-111. https://doi.org/10.1016/j.wri.2019.100111 doi: 10.1016/j.wri.2019.100111
    [155] Azubuike C. Chikere B, Okpokwasili C (2016) Bioremediation techniques-classification based on site of application: principles, advantages, limitations and prospects. World J Microbiol Biotechnol 32: 180. https://doi.org/10.1007/s11274-016-2137-x doi: 10.1007/s11274-016-2137-x
    [156] Crini G, Lichtfouse E (2019) Advantages and disadvantages of techniques used for wastewater treatment. Environ Chem Lett 17: 145-155. https://doi.org/10.1007/s10311-018-0785-9 doi: 10.1007/s10311-018-0785-9
    [157] Borchert E, Hammerschmidt K, Hentschel U, et al. (2021) Enhancing microbial pollutant degradation by integrating eco-evolutionary principles with environmental biotechnology. Trends Microbiol 29: 908-918. https://doi.org/10.1016/j.tim.2021.03.002 doi: 10.1016/j.tim.2021.03.002
    [158] Zhou Y, Kumar M, Sarsaiya S, et al. (2022) Challenges and opportunities in bioremediation of micro-nano plastics: a review. Sci Total Environ 802: 149823. https://doi.org/10.1016/j.scitotenv.2021.149823 doi: 10.1016/j.scitotenv.2021.149823
    [159] Kumar M, Xiong X, He M, et al. (2020) Micro-plastics as pollutants in agricultural soils. Environ Pollut 265: 114980. https://doi.org/10.1016/j.envpol.2020.114980 doi: 10.1016/j.envpol.2020.114980
    [160] Abdulyekeen K, Muhammad M, Giwa S, et al. (2016) Bioremediation of used motor oil contaminated soil using elephant and horse dung stimulants. IOSR J Environ Sci Toxicol Food Technol 10: 73-78. http://dx.doi.org/10.9790/2402-1012027378 doi: 10.9790/2402-1009017382
    [161] Yoshida S, Hiraga K, Takehana T, et al. (2016) A bacterium that degrades and assimilated polyethylene terephthalate. Science 351: 1196-1199. https://doi.org/10.1126/science.aad6359 doi: 10.1126/science.aad6359
    [162] Danso D, Chow J, Streit W (2019) Plastics: environmental and biotechnological perspectives on microbial degradation. Appl Environ Microbiol 85: e01095-19. https://doi.org/10.1128/AEM.01095-19 doi: 10.1128/AEM.01095-19
    [163] Son H, Cho I, Joo S, Seo H, et al. (2019) Rational protein engineering of thermo-stable PETase from Ideonella sakaiensis for highly effective PET degradation. ACS Catal 9: 3519-3526. https://doi.org/10.1021/acscatal.9b00568 doi: 10.1021/acscatal.9b00568
    [164] Zhang X, Dengm H, Liu N, et al. (2019) Molecular modification of a halohydrin dehalogenase for kinetic regulation to synthesize optically pure (S)-epichlorohydrin. Bioresour Technol 276: 154-160. https://doi.org/10.1016/j.biortech.2018.12.103 doi: 10.1016/j.biortech.2018.12.103
    [165] Rizwan M, Singh M, Mitra C, et al. (2014) Ecofriendly application of nanomaterials: nanobioremediation. J Nanopart 2014: 431787. https://doi.org/10.1155/2014/431787 doi: 10.1155/2014/431787
    [166] Mandeep S, Shukla P (2020) Microbial nanotechnology for bioremediation of industrial wastewater. Front Microbiol 11: 590631. https://doi.org/10.3389/fmicb.2020.590631 doi: 10.3389/fmicb.2020.590631
    [167] Wang X, Wang Q, Wang S, et al. (2012) Effect of biostimulation on community level physiological profiles of microorganisms in field-scale biopiles composed of aged oil sludge. Bioresour Technol 111: 308-315. https://doi.org/10.1016/j.biortech.2012.01.158 doi: 10.1016/j.biortech.2012.01.158
    [168] Bhattacharya A, Gupta A (2013) Evaluation of Acinetobacter sp. B9 for Cr (Ⅵ) resistance and detoxification with potential application in bioremediation of heavy-metals-rich industrial wastewater. ESPR 20: 6628-6637. https://doi.org/10.1007/s11356-013-1728-4 doi: 10.1007/s11356-013-1728-4
    [169] Cassidy D, Srivastava V, Dombrowski F, et al. (2015) Combining in situ chemical oxidation, stabilization, and anaerobic bioremediation in a single application to reduce contaminant mass and leachability in soil. J Hazard Mater 297: 347-355. https://doi.org/10.1016/j.jhazmat.2015.05.030 doi: 10.1016/j.jhazmat.2015.05.030
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3692) PDF downloads(469) Cited by(0)

Article outline

Figures and Tables

Figures(1)  /  Tables(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog