Review Special Issues

Bacillus spp. as a new direction in biocontrol and deodorization of organic fertilizers

  • Received: 01 December 2021 Revised: 01 February 2022 Accepted: 16 February 2022 Published: 04 March 2022
  • Bacteria belonging to the genus Bacillus are widely distributed in environments fulfilling several important functions. Due to their ability to produce antibiotics and other metabolites, these bacteria limit the development of pathogens and thus promote plant growth. They also play an important role in the deodorization of organic fertilizers, including manure, slurry, and dung. This article describes the characteristics of Bacillus spp., their properties, and their application in biocontrol.

    Citation: Karolina Nowocień, Barbara Sokołowska. Bacillus spp. as a new direction in biocontrol and deodorization of organic fertilizers[J]. AIMS Environmental Science, 2022, 9(2): 95-105. doi: 10.3934/environsci.2022007

    Related Papers:

  • Bacteria belonging to the genus Bacillus are widely distributed in environments fulfilling several important functions. Due to their ability to produce antibiotics and other metabolites, these bacteria limit the development of pathogens and thus promote plant growth. They also play an important role in the deodorization of organic fertilizers, including manure, slurry, and dung. This article describes the characteristics of Bacillus spp., their properties, and their application in biocontrol.



    加载中


    [1] Pietraszek P, Walczak P (2014) Charakterystyka i możliwości zastosowania bakterii z rodzaju Bacillus wyizolowanych z gleby. Pol J Agron 16: 37-44.
    [2] Saxena AK, Kumar M, Chakdar H, et al. (2020) Bacillus species in soil as a natural resource for plant health and nutrition. J Appl Microbiol 128: 1583-1594. https://doi.org/10.1111/jam.14506 doi: 10.1111/jam.14506
    [3] Aloo BN, Makumba BA, Mbega ER (2019) The potential of Bacilli rhizobacteria for sustainable crop production and environmental sustainability. Microbiol Res 219: 26-39. https://doi.org/10.1016/j.micres.2018.10.011 doi: 10.1016/j.micres.2018.10.011
    [4] Sansinena E (2019) Bacillus spp.: As plant growth-promoting bacteria. W: Singh H, Keswani C, Reddy M, Sansinena E, García-Estrada C Secondary Metabolites of Plant Growth Promoting Rhizo microorganisms. Springer, Singapore.
    [5] Deb P, Talukdar SA, Mohsina K, et al. (2013) Production and partial characterization of extracellular amylase enzyme from Bacillus amyloliquefaciens P-001. SpringerPlus 2: 154. https://doi.org/10.1186/2193-1801-2-154 doi: 10.1186/2193-1801-2-154
    [6] Libudzisz Z, Kowal K, Żakowska Z (2009) Mikrobiologia techniczna. PWN, wyd.1.
    [7] Logan NA, De Vos P (2009) Bacillus. In: Bergey's Manual of Systematics of Archaea and Bacteria. George M. Garrity (red.) et al. John Wiley & Sons, Inc.: 41.
    [8] Gordon RE, Haynes WC, Pang CH-N (1973) The genus Bacillus. Agriculture Handbook no. 427. United States Department of Agriculture, Washington, DC.
    [9] Smith NR, Clark FE (1973) A proposed grouping of the mesophilic, aerobic, spore-forming bacilli. Soil Sci Soc Am Proc 2: 255. https://doi.org/10.2136/sssaj1938.036159950002000C0039x doi: 10.2136/sssaj1938.036159950002000C0039x
    [10] Smith NR, Gordon RE, Clark FE (1946) Aerobic Mesophilic Spore-Forming Bacteria. Miscellaneous Publication 559. United States Department of Agriculture, Washington, DC.
    [11] Hashem A, Tabassum B, Abd_Allah EF (2019) Bacillus subtilis: A plant-growth promoting rhizobacterium that also impacts biotic stress. Saudi J Biol Sci 26: 1291-1297. https://doi.org/10.1016/j.sjbs.2019.05.004 doi: 10.1016/j.sjbs.2019.05.004
    [12] Lim JH, Kim SD (2009) Synergistic plant growth promotion by the indigenous auxins-producing PGPR Bacillus subtilis AH18 and Bacillus licheniforims K11. J Korean Soc Appl Biol Chem 52: 531-538. https://doi.org/10.3839/jksabc.2009.090 doi: 10.3839/jksabc.2009.090
    [13] Lim JH, Jeong HY, Kim SD (2011) Characterization of the Bacteriocin J4 produced by Bacillus amyloliquefaciens J4 isolated from Korean traditional fermented soybean paste. J Korean Soc Appl Biol Chem 54: 468-474. https://doi.org/10.3839/jksabc.2011.072 doi: 10.3839/jksabc.2011.072
    [14] Berini F, Katz C, Gruzdev N, et al. (2018) Microbial and viral chitinases: Attractive biopesticides for integrated pest management. Biotechnol Adv 36: 818-838. https://doi.org/10.1016/j.biotechadv.2018.01.002 doi: 10.1016/j.biotechadv.2018.01.002
    [15] Kim YK, Lee SC, Cho YY, et al. (2012) Isalation of cellulolityc Bacillus subtilis strains from agricultural environments. ISRN Microbiology 9. doi: 10.5402/2012/650563
    [16] Zhao X, Kuipers OP (2016) Identification and classification of known and putative antimicrobial compounds produced by a wide variety of Bacillales species. BMC Genom 17: 882. https://doi.org/10.1186/s12864-016-3224-y doi: 10.1186/s12864-016-3224-y
    [17] Mora I, Cabrefiga J, Montesinos E (2015) Cyclic lipopeptide biosynthetic genes and products, and inhibitory activity of plant-associated Bacillus against phytopathogenic bacteria. PLoS ONE 10. https://doi.org/10.1371/journal.pone.0127738
    [18] Ongena M, Jacques P (2008) Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol 16: 115-125. https://doi.org/10.1016/j.tim.2007.12.009 doi: 10.1016/j.tim.2007.12.009
    [19] Leite JA, Tulini FL, Barbosa dos Reis-Teixeira F, et al. (2016) Bacteriocin-like inhibitory substances (BLIS) produced by Bacillus cereus: Preliminary characterization and application of partially purified extract containing BLIS for inhibiting Listeria monocytogenes in pineapple pulp. LWT - Food Sci Technol 72: 261-266. https://doi.org/10.1016/j.lwt.2016.04.058 doi: 10.1016/j.lwt.2016.04.058
    [20] Lodemann U, Lorenz BM, Weyrauch KD, et al. (2008) Effects of Bacillus cereus var. toyoi as probiotic feed supplement on intestinal transport and barrier function in piglets. Arch Anim Nutr 62: 87-106. https://doi.org/10.1080/17450390801912068 doi: 10.1080/17450390801912068
    [21] Lastochkina O, Seifikalhor M, Aliniaeifard S, et al. (2019) Bacillus spp.: Efficient Biotic Strategy to Control Postharvest Diseases of Fruits and Vegetables. Plants 8: 97. https://doi.org/10.3390/plants8040097 doi: 10.3390/plants8040097
    [22] Duffy B, Schouten A, Raaijmakers JM (2003) Pathogen selfdefense: Mechanisms to counteract microbial antagonism. Annu Rev Phytopathol 41: 501-538. https://doi.org/10.1146/annurev.phyto.41.052002.095606 doi: 10.1146/annurev.phyto.41.052002.095606
    [23] Sansinena E (2012) Bacillus thuringiensis: biotechnology. Springer, Dordrecht.
    [24] Fan B, Wang C, Song X, et al. (2018) Bacillus velezensis FZB42 in 2018: The Gram-positive model strain for plant growth promotion and biocontrol. Front Microbiol 9: 2491. https://doi.org/10.3389/fmicb.2018.02491 doi: 10.3389/fmicb.2018.02491
    [25] Vinci G, Cozzolino V, Mazzei P, et al. (2018) Effects of Bacillus amyloliquefaciens and different phosphorus sources on Maize plants as revealed by NMR and GC-MS based metabolomics. Plant Soil 429: 437-450. https://doi.org/10.1007/s11104-018-3701-y doi: 10.1007/s11104-018-3701-y
    [26] Saxena AK, Karthikeyan N, Rajawat MVS (2017) Microbial interventions for improving phosphorus and potassium nutrition in plants. Indian J Fert 13: 128-137.
    [27] Yousuf J, Thajudeen J, Rahiman M, et al. (2017) Nitrogen fixing potential of various heterotrophic Bacillus strains from a tropical estuary and adjacent coastal regions. J Basic Microbiol 57: 922-932. https://doi.org/10.1002/jobm.201700072 doi: 10.1002/jobm.201700072
    [28] Saeid A, Prochownik E, Dobrowolska-Iwanek J (2018) Phosphorus solubilization by Bacillus species. Molecules 23: 2897. https://doi.org/10.3390/molecules23112897 doi: 10.3390/molecules23112897
    [29] Pramanik P, Goswami AJ, Ghosh S, et al. (2019) An indigenous strain of potassium-solubilizing bacteria Bacillus pseudomycoides enhanced potassium uptake in tea plants by increasing potassium availability in the mica waste-treated soil of North-east India. J Appl Microbiol 126: 215-222. https://doi.org/10.1111/jam.14130 doi: 10.1111/jam.14130
    [30] Stamenković S, Beškoski V, Karabegović I, et al. (2018) Microbial fertilizers: A comprehensive review of current findings and future prospective. Span J Agric Res 16. https://doi.org/10.5424/sjar/2018161-12117
    [31] Čolo J, Hajnal-Jafari TI, Durić S, et al. (2014) Plant growth promotion Rhizobacteria in onion production. Polish J Microbiol 63: 83-88.
    [32] Raheem A, Shaposhnikov A, Belimov AA, et al. (2018) Auxin production by rhizobacteria was associated with improved yield of wheat (Triticum aestivum L.) under drought stress. Arch Agron Soil Sci 64: 574-587. https://doi.org/10.1080/03650340.2017.1362105 doi: 10.1080/03650340.2017.1362105
    [33] Goswami D, Thakker JN, Dhandhukia PC (2016) Portraying mechanics of plant growth promoting rhizobacteria (PGPR): a review. Cogent Food Agric 2. https://doi.org/10.1080/23311932.2015.1127500
    [34] Pieterse CM, Zamioudis C, Berendsen RL, et al. (2014) Induced systemic resistance by beneficial microbes. Annu Rev Phytopathol 52: 347-375. https://doi.org/10.1146/annurev-phyto-082712-102340 doi: 10.1146/annurev-phyto-082712-102340
    [35] Arnaouteli S, Bamford NC, Stanley-Wall NR, et al. (2021) Bacillus subtilis biofilm formation and social interactions. Nat Rev Microbiol 19: 600-614. https://doi.org/10.1038/s41579-021-00540-9 doi: 10.1038/s41579-021-00540-9
    [36] Gingichashvili S, Duanis-Assaf D, Shemesh M, et al. (2017) Bacillus subtilis Biofilm Development-A Computerized Study of Morphology and Kinetics. Front Microbiol 8: 2072. https://doi.org/10.3389/fmicb.2017.02072 doi: 10.3389/fmicb.2017.02072
    [37] Flemming HC, Wuertz S (2019) Bacteria and archaea on Earth and their abundance in biofilms. Nat Rev Microbiol 17: 247-260. https://doi.org/10.1038/s41579-019-0158-9 doi: 10.1038/s41579-019-0158-9
    [38] Grzegorczyk M, Szalewicz A, Żarowska B, et al. (2015) Drobnoustroje w biologicznej ochronie roślin przed chorobami grzybowymi. Acta Sci Pol Biotechnol 14: 19-42.
    [39] Schisler DA, Slininger PJ, Behle RW, et al. (2004) Formulation of Bacillus spp. for biological control of plant diseases. Phytopathology 94: 1267-1271. https://doi.org/10.1094/PHYTO.2004.94.11.1267 doi: 10.1094/PHYTO.2004.94.11.1267
    [40] Bernet N, Beline F (2009) Challenges and innovations on biological treatment of livestock effluents. Bioresour Technol 100: 5431-5436. https://doi.org/10.1016/j.biortech.2009.02.003 doi: 10.1016/j.biortech.2009.02.003
    [41] Borowski S, Gutarowska B, Durka K, et al. (2010) Dezodoryzacja nawozu organicznego metodą biologiczną. Przemysł chemiczny 89: 322-318.
    [42] Kim YJ, Ahmed ST, Islam M, et al. (2014) Evaluation of Bacillus amyloliquefaciens as manure additive for control of odorous gas emission from pig slurry. Afr J Microbiol Res 8: 2540-2546. https://doi.org/10.5897/AJMR2014.6742 doi: 10.5897/AJMR2014.6742
    [43] Yuan S, Liu H, Liu M (2021) Application status and prospects of biological deodorization in China. Earth Environ Sci 631.
    [44] Rappert S, Müller R (2005) Microbial degradation of selected odorous substances. Waste Management 25: 940-954. https://doi.org/10.1016/j.wasman.2005.07.015 doi: 10.1016/j.wasman.2005.07.015
    [45] Ushida K, Hashizume K, Miyazaki K, et al. (2003) Isolation of Bacillus spp. As a volatile sulfur-degrading bacterium and its application to reduce the fecal odor of pig. Asian-Australas J Anim Sci 16: 1795-1798. https://doi.org/10.5713/ajas.2003.1795
    [46] Frenej JR, Simson JR, Denmead OT (1983) Volatilization of ammonia. Dev Plant Soil Sci 9: 1-31. https://doi.org/10.1007/978-94-017-1662-8_1 doi: 10.1007/978-94-017-1662-8_1
    [47] Wang Y, Cho JH, Chen YJ, et al. (2009) The effect of probiotic Bioplus 2B® on growth performance, dry matter and nitrogen digestibility and slurry noxious gas emission in growing pigs. Livest Sci 120: 35-42. https://doi.org/10.1016/j.livsci.2008.04.018 doi: 10.1016/j.livsci.2008.04.018
    [48] Banwart WL, Brenmer JM (1975) Identyfication of sulfur gases evolved from animal manures. J Environ Qual 4: 363-366. https://doi.org/10.2134/jeq1975.00472425000400030017x doi: 10.2134/jeq1975.00472425000400030017x
    [49] Nakada Y, Ohta Y (1997) Hydrogen sulfide removal by a deodorant bacterium Bacillus sp. BN53-1 (In Japanese). Seibutsu Kogaku Kaishi 75: 425-431.
    [50] Arakawa T, Ishikawa Y, Ushida K (2020) Volatile sulfur production by pig cecal bacteria in batch culture and screening inhibitors of sulfate-reducing bacteria. J Nutr Sci Vitaminol 46: 193-198. https://doi.org/10.3177/jnsv.46.193 doi: 10.3177/jnsv.46.193
    [51] Tuttle JH, Dugan PR, MacMillan CB, et al. (1969) Microbial dissimilatory sulfur cycle in acid mine water. J Bacteriol 97: 594-602. https://doi.org/10.1128/jb.97.2.594-602.1969 doi: 10.1128/jb.97.2.594-602.1969
    [52] Ushida K, Ohshima N, Tanimura A, et al. (2001) Evaluation of methanethiol and hydrogen sulfide production by standard strain of intestinal bacteria and isolates from pig feces. Biosci Microflora 20: 53-57. https://doi.org/10.12938/bifidus1996.20.53 doi: 10.12938/bifidus1996.20.53
    [53] Mpofu E, Chakraborty J, Suzuki-Minakuchi C, et al. (2020) Biotransformation of Monocyclic Phenolic Compounds by Bacillus licheniformis TAB7. Microorganisms 8: 26. https://doi.org/10.3390/microorganisms8010026 doi: 10.3390/microorganisms8010026
    [54] Mpofu E, Vejerano F, Suzuki-Minakuchi C, et al. (2019) Complete genom sequence of Bacillus licheniformis TAB7, a compost-deodorizing strain with potential for plant growth promotion. Microbiol Resour Announc 8. https://doi.org/10.1128/MRA.01659-18
    [55] Borowski S, Matusiak K, Powałowski S, et al. (2017) A novel microbial-mineral preparation for the removal of offensive odors from poultry manure. Int Biodeterior Biodegrad 119: 299-308. https://doi.org/10.1016/j.ibiod.2016.10.042 doi: 10.1016/j.ibiod.2016.10.042
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(13356) PDF downloads(366) Cited by(7)

Article outline

Figures and Tables

Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog