Research article

Current technology landscape of biochar in carbon capture and storage research via bibliometric analysis

  • Received: 04 October 2023 Revised: 04 January 2024 Accepted: 10 January 2024 Published: 01 February 2024
  • This study explores the current technology landscape and intersection of biochar and carbon capture and storage (CCS) within the engineering field, presenting a meticulous analysis gleaned from the Scopus database through bibliometric analysis. In response to the urgent need to address the escalating climate crisis, biochar, with its high carbon content, emerges as a promising and resilient tool for carbon sequestration. A literature review establishes biochar's pivotal role in mitigating climate change with contributions including substantial carbon sequestration potential, economic benefits, and positive impacts on soil structure and crop yields. Distinguishing between the applications of biochar and CCS, this paper emphasizes their complementary roles in decarbonization. By employing VOSviewer, an advanced bibliometric tool, a quantitative exploration of global connections identifying prominent authors, highly cited literature, and research trends is provided. The results reveal a substantial increase in publications related to biochar in CCS, particularly during the rapid development phase from 2016 to 2023, reflecting a growing interest in utilizing biochar as a carbon sink. Key insights from the co-occurrence analysis of keywords shed light on evolving research focuses, with three distinct clusters demonstrating the interconnectedness of adsorption, biochar, and pyrolysis. The precise method highlights a shift in research focus towards more impactful areas, particularly water pollutant removal and adsorption. The conclusion emphasizes biochar's dual role in soil carbon sequestration and carbon capture technologies, showcasing its versatility as a valuable tool in climate change mitigation efforts. Despite challenges in large-scale implementation, biochar, especially in the context of direct air capture and bioenergy CCS, emerges as a cost-effective and environmentally friendly adsorbent. In summary, this bibliometric analysis encapsulates a rigorous exploration of biochar and CCS, contributing valuable insights for researchers, policymakers and practitioners. By navigating uncharted territory, this study guides future endeavors toward impactful and relevant areas of study in the pursuit of sustainable climate change mitigation.

    Citation: Thananat Lungkadee, Tossapon Katongtung, Pich-ramon Pokkanta, Tossaporn Onsree, Chawannat Jaroenkhasemmeesuk, Nakorn Tippayawong. Current technology landscape of biochar in carbon capture and storage research via bibliometric analysis[J]. AIMS Energy, 2024, 12(1): 277-303. doi: 10.3934/energy.2024014

    Related Papers:

  • This study explores the current technology landscape and intersection of biochar and carbon capture and storage (CCS) within the engineering field, presenting a meticulous analysis gleaned from the Scopus database through bibliometric analysis. In response to the urgent need to address the escalating climate crisis, biochar, with its high carbon content, emerges as a promising and resilient tool for carbon sequestration. A literature review establishes biochar's pivotal role in mitigating climate change with contributions including substantial carbon sequestration potential, economic benefits, and positive impacts on soil structure and crop yields. Distinguishing between the applications of biochar and CCS, this paper emphasizes their complementary roles in decarbonization. By employing VOSviewer, an advanced bibliometric tool, a quantitative exploration of global connections identifying prominent authors, highly cited literature, and research trends is provided. The results reveal a substantial increase in publications related to biochar in CCS, particularly during the rapid development phase from 2016 to 2023, reflecting a growing interest in utilizing biochar as a carbon sink. Key insights from the co-occurrence analysis of keywords shed light on evolving research focuses, with three distinct clusters demonstrating the interconnectedness of adsorption, biochar, and pyrolysis. The precise method highlights a shift in research focus towards more impactful areas, particularly water pollutant removal and adsorption. The conclusion emphasizes biochar's dual role in soil carbon sequestration and carbon capture technologies, showcasing its versatility as a valuable tool in climate change mitigation efforts. Despite challenges in large-scale implementation, biochar, especially in the context of direct air capture and bioenergy CCS, emerges as a cost-effective and environmentally friendly adsorbent. In summary, this bibliometric analysis encapsulates a rigorous exploration of biochar and CCS, contributing valuable insights for researchers, policymakers and practitioners. By navigating uncharted territory, this study guides future endeavors toward impactful and relevant areas of study in the pursuit of sustainable climate change mitigation.



    加载中


    [1] Pelissari MR, Cañas SSM, Barbosa MO, et al. (2023) Decarbonizing coal-fired power plants: Carbon capture and storage applied to a thermoelectric complex in Brazil. Results Eng 19: 101249. https://doi.org/10.1016/j.rineng.2023.101249 doi: 10.1016/j.rineng.2023.101249
    [2] Shu DY, Deutz S, Winter BA, et al. (2023) The role of carbon capture and storage to achieve net-zero energy systems: Trade-offs between economics and the environment. Renew Sust Energ Rev 178: 113246. https://doi.org/10.1016/j.rser.2023.113246 doi: 10.1016/j.rser.2023.113246
    [3] Hua W, Sha Y, Zhang X, et al. (2023) Research progress of carbon capture and storage (CCS) technology based on the shipping industry. Ocean Eng 281: 114929. https://doi.org/10.1016/j.oceaneng.2023.114929 doi: 10.1016/j.oceaneng.2023.114929
    [4] Allen M, Dube OP, Solecki W, et al. (2018) Special report: Global warming of 1.5 C. Intergovernmental Panel on Climate Change (IPCC).
    [5] Asgarizadeh Z, Gifford R, Colborne L (2023) Predicting climate change anxiety. J Environ Psychol 90: 102087. https://doi.org/10.1016/j.jenvp.2023.102087 doi: 10.1016/j.jenvp.2023.102087
    [6] Crespi A, Renner K, Zebisch M, et al. (2023) Analysing spatial patterns of climate change: Climate clusters, hotspots and analogues to support climate risk assessment and communication in Germany. Clim Serv 30: 100373. https://doi.org/10.1016/j.cliser.2023.100373 doi: 10.1016/j.cliser.2023.100373
    [7] IPCC (2022) Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group Ⅲ to the Sixth Assessment Report of the Intergovernmental Panel on Climate.
    [8] Wen Y, Wang S, Shi Z, et al. (2022) H2-rich syngas production from pyrolysis of agricultural waste digestate coupled with the hydrothermal carbonization process. Energy Convers Manag 269: 116101. https://doi.org/10.1016/j.enconman.2022.116101 doi: 10.1016/j.enconman.2022.116101
    [9] Ababneh H, Hameed BH (2021) Chitosan-derived hydrothermally carbonized materials and its applications: A review of recent literature. Int J Biol Macromol 186: 314–327. https://doi.org/10.1016/j.ijbiomac.2021.06.161 doi: 10.1016/j.ijbiomac.2021.06.161
    [10] Hu J, Jåstad EO, Bolkesjø TF, et al. (2023) Impact of large-scale Bio-CCS deployment on forest biomass competition and forest industry production. Biomass Bioenergy 175: 106896. https://doi.org/10.1016/j.biombioe.2023.106896 doi: 10.1016/j.biombioe.2023.106896
    [11] Schmidt HP, Anca-Couce A, Hagemann N, et al. (2019) Pyrogenic carbon capture and storage. Glob. Change Biol Bioenergy 11: 573–591. https://doi.org/10.1111/gcbb.12553 doi: 10.1111/gcbb.12553
    [12] Melo LCA, Lehmann J, Carneiro JSDS, et al. (2022) Biochar-based fertilizer effects on crop productivity: a meta-analysis. Plant Soil 472: 45–58. https://doi.org/10.1007/s11104-021-05276-2 doi: 10.1007/s11104-021-05276-2
    [13] Kurniawan TA, Othman MHD, Liang X, et al. (2023) Challenges and opportunities for biochar to promote circular economy and carbon neutrality. J Environ Manage 332: 117429. https://doi.org/10.1016/j.jenvman.2023.117429 doi: 10.1016/j.jenvman.2023.117429
    [14] Wang J, Manning DA, Stirling R, et al. (2023) Biochar benefits carbon off-setting in blue-green infrastructure soils-A lysimeter study. J Environ Manage 325: 116639. https://doi.org/10.1016/j.jenvman.2022.116639 doi: 10.1016/j.jenvman.2022.116639
    [15] Masson-Delmotte V, Zhai P, Pö rtner HO, et al. (2020) Climate change and land: An IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems: Summary for Policymakers.
    [16] Fuss S, Lamb WF, Callaghan MW, et al. (2018) Negative emissions—Part 2: Costs, potentials and side effects. Environ Res Lett 13: 063002. https://doi.org/10.1088/1748-9326/aabf9f doi: 10.1088/1748-9326/aabf9f
    [17] Yixuan CHEN, Zhonghua WEN, Jun MENG, et al. (2023) The positive effects of biochar application on Rhizophagus irregularis, rice seedlings, and phosphorus cycling in paddy soil. Pedosphere 33. https://doi.org/10.1016/j.pedsph.2023.06.008 doi: 10.1016/j.pedsph.2023.06.008
    [18] Ren T, Fan P, Zuo W, et al. (2023) Biochar-based fertilizer under drip irrigation: More conducive to improving soil carbon pool and promoting nitrogen utilization. Ecol Indic 154: 110583. https://doi.org/10.1016/j.ecolind.2023.110583 doi: 10.1016/j.ecolind.2023.110583
    [19] Schmidt HP, Kammann C, Hagemann N, et al. (2021) Biochar in agriculture–A systematic review of 26 global meta‐analyses. Glob Change Biol Bioenergy 13: 1708–1730. https://doi.org/10.1111/gcbb.12889 doi: 10.1111/gcbb.12889
    [20] Hashem EAR, Md Salleh NZ, Abdullah M, et al. (2023) Research trends, developments, and future perspectives in brand attitude: A bibliometric analysis utilizing the Scopus database (1944–2021). Heliyon 9: e12765. https://doi.org/10.1016/j.heliyon.2022.e12765 doi: 10.1016/j.heliyon.2022.e12765
    [21] Kelly R, Elsler LG, Polejack A, et al. (2022) Empowering young people with climate and ocean science: Five strategies for adults to consider. One Earth 5: 861–874. https://doi.org/10.1016/j.oneear.2022.07.007 doi: 10.1016/j.oneear.2022.07.007
    [22] Hamilton W, Philippe C, Hospedales J, et al. (2023) Building capacity of healthcare professionals and community members to address climate and health threats in The Bahamas: Analysis of a green climate fund pilot workshop. Dialogues Health 3: 100141. https://doi.org/10.1016/j.dialog.2023.100141 doi: 10.1016/j.dialog.2023.100141
    [23] Buber M, Koseoglu B (2022) The bibliometric analysis and visualization mapping of net environmental benefit analysis (NEBA). Mar Pollut Bull 181: 113931. https://doi.org/10.1016/j.marpolbul.2022.113931 doi: 10.1016/j.marpolbul.2022.113931
    [24] Zulkifli MF, Sivakumar M, Maulidiani M, et al. (2023) Bibliometric approach to trehalulose research trends for its potential health benefits. Food Biosci 53: 102677. https://doi.org/10.1016/j.fbio.2023.102677 doi: 10.1016/j.fbio.2023.102677
    [25] Nielsen SB, Lemire S, Bourgeois I, et al. (2023) Mapping the evaluation capacity building landscape: A bibliometric analysis of scholarly communities and themes. Eval Program Plann 99: 102318. https://doi.org/10.1016/j.evalprogplan.2023.102318 doi: 10.1016/j.evalprogplan.2023.102318
    [26] Ghaffar ARA, Melethil A, Adhami AY (2023) A bibliometric analysis of inverse optimization. J King Saud Univ Sci 35: 102825. https://doi.org/10.1016/j.jksus.2023.102825 doi: 10.1016/j.jksus.2023.102825
    [27] Van Eck N, Waltman L (2010) Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 84: 523–538. https://doi.org/10.1007/s11192-009-0146-3 doi: 10.1007/s11192-009-0146-3
    [28] Waltman L, Van Eck NJ, Noyons EC (2010) A unified approach to mapping and clustering of bibliometric networks. J Informetr 4: 629–635. https://doi.org/10.1016/j.joi.2010.07.002 doi: 10.1016/j.joi.2010.07.002
    [29] Xie H, Zhang Y, Zeng X, et al. (2020) Sustainable land use and management research: A scientometric review. Landsc Ecol 35: 2381–2411. https://doi.org/10.1007/s10980-020-01002-y doi: 10.1007/s10980-020-01002-y
    [30] Cobo MJ, López-Herrera AG, Herrera-Viedma E, et al. (2011) An approach for detecting, quantifying, and visualizing the evolution of a research field: A practical application to the Fuzzy Sets Theory field. J Informetr 5: 146–166. https://doi.org/10.1016/j.joi.2010.10.002 doi: 10.1016/j.joi.2010.10.002
    [31] Gutiérrez-Salcedo M, Martínez MÁ, Moral-Munoz JA, et al. (2018) Some bibliometric procedures for analyzing and evaluating research fields. Appl Intell 48: 1275–1287. https://doi.org/ 10.1007/s10489-017-1105-y doi: 10.1007/s10489-017-1105-y
    [32] Zhang T, Tang Y, Li H, et al. (2023) A bibliometric review of biochar for soil carbon sequestration and mitigation from 2001 to 2020. Ecotoxicol Environ Saf 264: 115438. https://doi.org/10.1016/j.ecoenv.2023.115438 doi: 10.1016/j.ecoenv.2023.115438
    [33] Ajibade S, Nnadozie EC, Iwai CB, et al. (2022) Biochar-based compost: a bibliometric and visualization analysis. Bioeng 13: 15013–15032. https://doi.org/10.1080/21655979.2023.2177369 doi: 10.1080/21655979.2023.2177369
    [34] Rahim HU, Allevato E, Radicetti E, et al. (2023) Research trend of aging biochar for agro-environmental applications: A bibliometric data analysis and visualization of the last decade (2011–2023). J Soil Sci Plant Nutr 23: 4843–4855. https://doi.org/10.1007/s42729-023-01456-4 doi: 10.1007/s42729-023-01456-4
    [35] Kumar A, Bhattacharya T, Shaikh WA, et al. (2023) Multifaceted applications of biochar in environmental management: a bibliometric profile. Biochar 5: 11. https://doi.org/10.1007/s42773-023-00207-z doi: 10.1007/s42773-023-00207-z
    [36] Jiang H, Chen H, Duan Z, et al. (2023) Research progress and trends of biochar in the field of wastewater treatment by electrochemical advanced oxidation processes (EAOPs): A bibliometric analysis. J Hazard Mater 10: 100305. https://doi.org/10.1016/j.hazadv.2023.100305 doi: 10.1016/j.hazadv.2023.100305
    [37] Pham TY (2023) A smart port development: Systematic literature and bibliometric analysis. Asian J Shipp Logist 39: 57–62. https://doi.org/10.1016/j.ajsl.2023.06.005 doi: 10.1016/j.ajsl.2023.06.005
    [38] Abdelwahab SI, Taha MME, Moni SS, et al. (2023) Bibliometric mapping of solid lipid nanoparticles research (2012–2022) using VOSviewer. Med Nov Technol Devices 17: 100217. https://doi.org/10.1016/j.medntd.2023.100217 doi: 10.1016/j.medntd.2023.100217
    [39] Mongeon P, Paul-Hus A (2016) The journal coverage of Web of Science and Scopus: a comparative analysis. Scientometrics 106: 213–228. https://doi.org/10.1007/s11192-015-1765-5 doi: 10.1007/s11192-015-1765-5
    [40] Keiluweit M, Nico PS, Johnson MG, et al. (2010) Dynamic molecular structure of plant biomass-derived black carbon (biochar). Environ Sci Technol 44: 1247–1253. https://doi.org/10.1021/es9031419 doi: 10.1021/es9031419
    [41] Woolf D, Amonette JE, Street-Perrott FA, et al. (2010) Sustainable biochar to mitigate global climate change. Nat Commun 1: 56. https://doi.org/10.1038/ncomms1053 doi: 10.1038/ncomms1053
    [42] Smith P (2016) Soil carbon sequestration and biochar as negative emission technologies. Glob Chang Biol 22: 1315–1324. https://doi.org/10.1111/gcb.13178 doi: 10.1111/gcb.13178
    [43] Premarathna KSD, Rajapaksha AU, Sarkar B, et al. (2019) Biochar-based engineered composites for sorptive decontamination of water: A review. Chem Eng J 372: 536–550. https://doi.org/10.1016/j.cej.2019.04.097 doi: 10.1016/j.cej.2019.04.097
    [44] Tan XF, Liu SB, Liu YG, et al. (2017) Biochar as potential sustainable precursors for activated carbon production: Multiple applications in environmental protection and energy storage. Bioresour Technol 227: 359–372. https://doi.org/10.1016/j.biortech.2016.12.083 doi: 10.1016/j.biortech.2016.12.083
    [45] Wang Y, Li H, Lin S (2022) Advances in the study of heavy metal adsorption from water and soil by modified biochar. Water 14: 3894. https://doi.org/10.3390/w14233894 doi: 10.3390/w14233894
    [46] Yu S, Tang H, Zhang D, et al. (2022) MXenes as emerging nanomaterials in water purification and environmental remediation. Sci Total Environ 811: 152280. https://doi.org/10.1016/j.scitotenv.2021.152280 doi: 10.1016/j.scitotenv.2021.152280
    [47] Guo S, Li Y, Wang Y, et al. (2022) Recent advances in biochar-based adsorbents for CO2 capture. Carbon Capture Sci Technol 4: 100059. https://doi.org/10.1016/j.ccst.2022.100059 doi: 10.1016/j.ccst.2022.100059
    [48] Wang T, Liu J, Zhang Y, et al. (2018) Use of a non-thermal plasma technique to increase the number of chlorine active sites on biochar for improved mercury removal. Chem Eng J 331: 536–544. https://doi.org/10.1016/j.cej.2017.09.017 doi: 10.1016/j.cej.2017.09.017
    [49] Shafawi AN, Mohamed AR, Lahijani P, et al. (2021) Recent advances in developing engineered biochar for CO2 capture: An insight into the biochar modification approaches. J Environ Chem Eng 9: 106869. https://doi.org/10.1016/j.jece.2021.106869 doi: 10.1016/j.jece.2021.106869
    [50] Serafin J, Ouzzine M, Junior OFC, et al. (2021) Preparation of low-cost activated carbons from amazonian nutshells for CO2 storage. Biomass Bioenergy 144: 105925. https://doi.org/10.1016/j.biombioe.2020.105925 doi: 10.1016/j.biombioe.2020.105925
    [51] Singh E, Kumar A, Mishra R, et al. (2021) Pyrolysis of waste biomass and plastics for production of biochar and its use for removal of heavy metals from aqueous solution. Bioresour Technol 320: 124278. https://doi.org/10.1016/j.biortech.2020.124278 doi: 10.1016/j.biortech.2020.124278
    [52] Bell MJ, Worrall F (2011) Charcoal addition to soils in NE England: a carbon sink with environmental co-benefits? Sci Total Environ 409: 1704–1714. https://doi.org/10.1016/j.scitotenv.2011.01.031 doi: 10.1016/j.scitotenv.2011.01.031
    [53] Mulabagal V, Baah DA, Egiebor NO, et al. (2015) Biochar from biomass: a strategy for carbon dioxide sequestration, soil amendment, power generation, and CO2 utilization. Handbook of Climate Change Mitigation and Adaptation, 4 Eds., New York: 1937–1974.
    [54] Taha SM, Amer ME, Elmarsafy AE, et al. (2014) Adsorption of 15 different pesticides on untreated and phosphoric acid treated biochar and charcoal from water. J Environ Chem Eng 2: 2013–2025. https://doi.org/10.1016/j.jece.2014.09.001 doi: 10.1016/j.jece.2014.09.001
    [55] Novotny EH, Maia CMBDF, Carvalho MTDM, et al. (2015) Biochar: pyrogenic carbon for agricultural use-a critical review. Rev Bras Cienc Solo 39: 321–344. https://doi.org/10.1590/01000683rbcs20140818 doi: 10.1590/01000683rbcs20140818
    [56] Gerke J (2019) Black (pyrogenic) carbon in soils and waters: A fragile data basis extensively interpreted. Chem Biol Technol Agric 6: 1–8. https://doi.org/10.1186/s40538-019-0151-6 doi: 10.1186/s40538-019-0151-6
    [57] Steinbeiss S, Gleixner G, Antonietti M (2009) Effect of biochar amendment on soil carbon balance and soil microbial activity. Soil Biol Biochem 41: 1301–1310. https://doi.org/10.1016/j.soilbio.2009.03.016 doi: 10.1016/j.soilbio.2009.03.016
    [58] Asadullah M, Rahman MA, Ali MM, et al. (2007) Production of bio-oil from fixed bed pyrolysis of bagasse. Fuel 86: 2514–2520. https://doi.org/10.1016/j.fuel.2007.02.007 doi: 10.1016/j.fuel.2007.02.007
    [59] Chen B, Zhou D, Zhu L (2008) Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures. Environ Sci Technol 42: 5137–5143. https://doi.org/10.1021/es8002684 doi: 10.1021/es8002684
    [60] Mukherjee A, Zimmerman AR, Harris W (2011) Surface chemistry variations among a series of laboratory-produced biochars. Geoderma 163: 247–255. https://doi.org/10.1016/j.geoderma.2011.04.021 doi: 10.1016/j.geoderma.2011.04.021
    [61] Baquy M, Li JY, Xu CY, et al. (2017) Determination of critical pH and Al concentration of acidic Ultisols for wheat and canola crops. Solid Earth 8: 149–159. https://doi.org/10.5194/se-8-149-2017 doi: 10.5194/se-8-149-2017
    [62] Chen B, Chen Z (2009) Sorption of naphthalene and 1-naphthol by biochars of orange peels with different pyrolytic temperatures. Chemosphere 76: 127–133. https://doi.org/10.1016/j.chemosphere.2009.02.004 doi: 10.1016/j.chemosphere.2009.02.004
    [63] Mia S, Singh B, Dijkstra FA (2017) Aged biochar affects gross nitrogen mineralization and recovery: a 15N study in two contrasting soils. Glob Change Biol Bioenergy 9: 1196–1206. https://doi.org/10.1111/gcbb.12430 doi: 10.1111/gcbb.12430
    [64] Yuan P, Wang J, Pan Y, et al. (2019) Review of biochar for the management of contaminated soil: Preparation, application and prospect. Sci Total Environ 659: 473–490. https://doi.org/10.1016/j.scitotenv.2018.12.400 doi: 10.1016/j.scitotenv.2018.12.400
    [65] Juárez JM, Pastor ER, Sevilla JMF, et al. (2018) Effect of pretreatments on biogas production from microalgae biomass grown in pig manure treatment plants. Bioresour Technol 257: 30–38. https://doi.org/10.1016/j.biortech.2018.02.063 doi: 10.1016/j.biortech.2018.02.063
    [66] Romero Millán LM, Sierra Vargas FE, Nzihou A (2019) Catalytic effect of inorganic elements on steam gasification biochar properties from agrowastes. Energy Fuels 33: 8666–8675. https://doi.org/10.1021/acs.energyfuels.9b01460 doi: 10.1021/acs.energyfuels.9b01460
    [67] Cabeza I, Waterhouse T, Sohi S, et al. (2018) Effect of biochar produced from different biomass sources and at different process temperatures on methane production and ammonia concentrations in vitro. Anim Feed Sci Technol 237: 1–7. https://doi.org/10.1016/j.anifeedsci.2018.01.003 doi: 10.1016/j.anifeedsci.2018.01.003
    [68] Shakya A, Agarwal T (2017) Poultry litter biochar: an approach towards poultry litter management–a review. Int J Curr Microbiol App Sci 6: 2657–2668. https://doi.org/10.20546/ijcmas.2017.610.314 doi: 10.20546/ijcmas.2017.610.314
    [69] Yang W, Feng G, Miles D, et al. (2020) Impact of biochar on greenhouse gas emissions and soil carbon sequestration in corn grown under drip irrigation with mulching. Sci Total Environ 729: 138752. https://doi.org/10.1016/j.scitotenv.2020.138752 doi: 10.1016/j.scitotenv.2020.138752
    [70] Karimi M, Zafanelli LF, Almeida JP, et al. (2020) Novel insights into activated carbon derived from municipal solid waste for CO2 uptake: synthesis, adsorption isotherms and scale-up. J Environ Chem Eng 8: 104069. https://doi.org/10.1016/j.jece.2020.104069 doi: 10.1016/j.jece.2020.104069
    [71] Karimi M, Diaz de Tuesta JL, Gonçalves CN, et al. (2020) Compost from municipal solid wastes as a source of biochar for CO2 capture. Chem Eng Technol 4: 1336–1349. https://doi.org/10.1002/ceat.201900108 doi: 10.1002/ceat.201900108
    [72] Hemavathy RV, Kumar PS, Kanmani K, et al. (2020) Adsorptive separation of Cu (Ⅱ) ions from aqueous medium using thermally/chemically treated Cassia fistula based biochar. J Clean Prod 249: 119390. https://doi.org/10.1016/j.jclepro.2019.119390 doi: 10.1016/j.jclepro.2019.119390
    [73] Amusat SO, Kebede TG, Dube S, et al. (2021) Ball-milling synthesis of biochar and biochar–based nanocomposites and prospects for removal of emerging contaminants: A review. J Water Process Eng 41: 101993. https://doi.org/10.1016/j.jwpe.2021.101993 doi: 10.1016/j.jwpe.2021.101993
    [74] Xu Y, Bai T, Yan Y, et al. (2020) Influence of sodium hydroxide addition on characteristics and environmental risk of heavy metals in biochars derived from swine manure. Waste Manag 105: 511–519. https://doi.org/10.1016/j.wasman.2020.02.035 doi: 10.1016/j.wasman.2020.02.035
    [75] Tang H, Wang J, Zhang S, et al. (2021) Recent advances in nanoscale zero-valent iron-based materials: Characteristics, environmental remediation and challenges. J Clean Prod 319: 128641. https://doi.org/10.1016/j.jclepro.2021.128641 doi: 10.1016/j.jclepro.2021.128641
    [76] Tian R, Dong H, Chen J, et al. (2021) Electrochemical behaviors of biochar materials during pollutant removal in wastewater: A review. Chem Eng J 425: 130585. https://doi.org/10.1016/j.cej.2021.130585 doi: 10.1016/j.cej.2021.130585
    [77] El-Naggar A, Ahmed N, Mosa A, et al. (2021) Nickel in soil and water: Sources, biogeochemistry, and remediation using biochar. J Hazard Mater 419: 126421. https://doi.org/10.1016/j.jhazmat.2021.126421 doi: 10.1016/j.jhazmat.2021.126421
    [78] Zhao C, Wang B, Theng BK, et al. (2021) Formation and mechanisms of nano-metal oxide-biochar composites for pollutants removal: A review. Sci Total Environ 767: 145305. https://doi.org/10.1016/j.scitotenv.2021.145305 doi: 10.1016/j.scitotenv.2021.145305
    [79] Liang L, Xi F, Tan W, et al. (2021) Review of organic and inorganic pollutants removal by biochar and biochar-based composites. Biochar 3: 255–281. https://doi.org/10.1007/s42773-021-00101-6 doi: 10.1007/s42773-021-00101-6
    [80] Zhou X, Zhu Y, Niu Q, et al. (2021) New notion of biochar: A review on the mechanism of biochar applications in advannced oxidation processes. Chem Eng J 416: 129027. https://doi.org/10.1016/j.cej.2021.129027 doi: 10.1016/j.cej.2021.129027
    [81] Kamali M, Appels L, Kwon EE, et al. (2021) Biochar in water and wastewater treatment-a sustainability assessment. Chem Eng J 420: 129946. https://doi.org/10.1016/j.cej.2021.129946 doi: 10.1016/j.cej.2021.129946
    [82] Arif M, Liu G, Yousaf B, et al. (2021) Synthesis, characteristics and mechanistic insight into the clays and clay minerals-biochar surface interactions for contaminants removal-A review. J Clean Prod 310: 127548. https://doi.org/10.1016/j.jclepro.2021.127548 doi: 10.1016/j.jclepro.2021.127548
    [83] Cheng N, Wang B, Wu P, et al. (2021) Adsorption of emerging contaminants from water and wastewater by modified biochar: A review. Environ Pollut 273: 116448. https://doi.org/10.1016/j.envpol.2021.116448 doi: 10.1016/j.envpol.2021.116448
    [84] Mohan D, Sarswat A, Ok YS, et al. (2014) Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent–a critical review. Bioresour Technol 160: 191–202. https://doi.org/10.1016/j.biortech.2014.01.120 doi: 10.1016/j.biortech.2014.01.120
    [85] Liu WJ, Jiang H, Yu HQ (2015) Development of biochar-based functional materials: toward a sustainable platform carbon material. Chem Rev 115: 12251–12285. https://doi.org/10.1021/acs.chemrev.5b00195 doi: 10.1021/acs.chemrev.5b00195
    [86] Zimmerman AR, Gao B, Ahn MY (2011) Positive and negative carbon mineralization priming effects among a variety of biochar-amended soils. Soil Biol Biochem 43: 1169–1179. https://doi.org/10.1016/j.soilbio.2011.02.005 doi: 10.1016/j.soilbio.2011.02.005
    [87] Inyang MI, Gao B, Yao Y, et al. (2016) A review of biochar as a low-cost adsorbent for aqueous heavy metal removal. Crit Rev Environ Sci Technol 46: 406–433. https://doi.org/10.1080/10643389.2015.1096880 doi: 10.1080/10643389.2015.1096880
    [88] Ahmad M, Lee SS, Dou X, et al. (2012) Effects of pyrolysis temperature on soybean stover-and peanut shell-derived biochar properties and TCE adsorption in water. Bioresour Technol 118: 536–544. https://doi.org/10.1016/j.biortech.2012.05.042 doi: 10.1016/j.biortech.2012.05.042
    [89] Zimmerman AR (2010) Abiotic and microbial oxidation of laboratory-produced black carbon (biochar). Environ Sci Technol 44: 1295–1301. https://doi.org/10.1021/es903140c doi: 10.1021/es903140c
    [90] Roberts KG, Gloy BA, Joseph S, et al. (2010) Life cycle assessment of biochar systems: estimating the energetic, economic, and climate change potential. Environ Sci Technol 44: 827–833. https://doi.org/10.1021/es902266r doi: 10.1021/es902266r
    [91] Wu P, Singh BP, Wang H, et al. (2023) Bibliometric analysis of biochar research in 2021: a critical review for development, hotspots and trend directions. Biochar 5: 6. https://doi.org/10.1007/s42773-023-00204-2 doi: 10.1007/s42773-023-00204-2
    [92] Cao Y, Shan Y, Wu P, et al. (2021) Mitigating the global warming potential of rice paddy fields by straw and straw-derived biochar amendments. Geoderma 396: 115081. https://doi.org/10.1016/j.geoderma.2021.115081 doi: 10.1016/j.geoderma.2021.115081
    [93] Nan Q, Xin L, Qin Y, et al. (2021) Exploring long-term effects of biochar on mitigating methane emissions from paddy soil: a review. Biochar 3: 125–134. https://doi.org/10.1007/s42773-021-00096-0 doi: 10.1007/s42773-021-00096-0
    [94] Xu Z, He M, Xu X, et al. (2021) Impacts of different activation processes on the carbon stability of biochar for oxidation resistance. Bioresour Technol 338: 125555. https://doi.org/10.1016/j.biortech.2021.125555 doi: 10.1016/j.biortech.2021.125555
    [95] Guenet B, Gabrielle B, Chenu C, et al. (2021) Can N2O emissions offset the benefits from soil organic carbon storage? Glob Chang Biol 27: 237–256. https://doi.org/10.1111/gcb.15342 doi: 10.1111/gcb.15342
    [96] Yang Q, Mašek O, Zhao L, et al. (2021) Country-level potential of carbon sequestration and environmental benefits by utilizing crop residues for biochar implementation. Appl Energy 282: 116275. https://doi.org/10.1016/j.apenergy.2020.116275 doi: 10.1016/j.apenergy.2020.116275
    [97] Leppäkoski L, Marttila MP, Uusitalo V, et al. (2021) Assessing the carbon footprint of biochar from willow grown on marginal lands in Finland. Sustainability 13: 10097. https://doi.org/10.3390/su131810097 doi: 10.3390/su131810097
    [98] Woolf D, Lehmann J, Ogle S, et al. (2021) Greenhouse gas inventory model for biochar additions to soil. Environ Sci Technol 55: 14795–14805. https://doi.org/10.1021/acs.est.1c02425 doi: 10.1021/acs.est.1c02425
    [99] Osman AI, Fawzy S, Farghali M, et al. (2022) Biochar for agronomy, animal farming, anaerobic digestion, composting, water treatment, soil remediation, construction, energy storage, and carbon sequestration: A review. Environ Chem Lett 20: 2385–2485. https://doi.org/10.1007/s10311-022-01424-x doi: 10.1007/s10311-022-01424-x
    [100] Lehmann J, Cowie A, Masiello CA, et al. (2021) Biochar in climate change mitigation. Nat Geosci 14: 883–892. https://doi.org/10.1038/s41561-021-00852-8 doi: 10.1038/s41561-021-00852-8
    [101] Rai RK, Reddy KR (2019) Role of Landfill Cover Materials in Mitigating GHG Emissions in Biogeochemical Landfill Cover System. In World Environmental and Water Resources Congress 2019. Available from: https://doi.org/10.1061/9780784482322.006
    [102] Feng D, Guo D, Zhang Y, et al. (2021) Adsorption-enrichment characterization of CO2 and dynamic retention of free NH3 in functionalized biochar with H2O/NH3·H2O activation for promotion of new ammonia-based carbon capture. Chem Eng J 409: 128193. https://doi.org/10.1016/j.cej.2020.128193 doi: 10.1016/j.cej.2020.128193
    [103] Ma Q, Chen W, Jin Z, et al. (2021) One-step synthesis of microporous nitrogen-doped biochar for efficient removal of CO2 and H2S. Fuel 289: 119932. https://doi.org/10.1016/j.fuel.2020.119932 doi: 10.1016/j.fuel.2020.119932
    [104] Zhang C, Sun S, He S, et al. (2022) Direct air capture of CO2 by KOH-activated bamboo biochar. J Energy Inst 105: 399–405. https://doi.org/10.1016/j.joei.2022.10.017 doi: 10.1016/j.joei.2022.10.017
    [105] Buss W, Jansson S, Wurzer C, et al. (2019) Synergies between BECCS and biochar—maximizing carbon sequestration potential by recycling wood ash. ACS Sustain Chem Eng 7: 4204–4209. https://doi.org/10.1021/acssuschemeng.8b05871 doi: 10.1021/acssuschemeng.8b05871
    [106] Xiong X, He M, Dutta S, et al. (2022) Biochar and sustainable development goals. Biochar in Agriculture for Achieving Sustainable Development Goals, Academic Press, 15–22.
    [107] Kumar A, Bhattacharya T (2021) Biochar: A sustainable solution. Environ Dev Sustain 23: 6642–6680. https://doi.org/10.1007/s10668-020-00970-0 doi: 10.1007/s10668-020-00970-0
    [108] Neogi S, Sharma V, Khan N, et al. (2022) Sustainable biochar: A facile strategy for soil and environmental restoration, energy generation, mitigation of global climate change and circular bioeconomy. Chemosphere 293: 133474. https://doi.org/10.1016/j.chemosphere.2021.133474 doi: 10.1016/j.chemosphere.2021.133474
    [109] Sizmur T, Fresno T, Akgül G, et al. (2017). Biochar modification to enhance sorption of inorganics from water. Bioresour Technol 246: 34–47. https://doi.org/10.1016/j.biortech.2017.07.082 doi: 10.1016/j.biortech.2017.07.082
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1561) PDF downloads(164) Cited by(1)

Article outline

Figures and Tables

Figures(10)  /  Tables(4)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog