Review Special Issues

Design and protection of microgrid clusters: A comprehensive review

  • Received: 18 January 2022 Revised: 04 May 2022 Accepted: 09 May 2022 Published: 23 May 2022
  • A microgrid is a concept that has been developed with the increasing penetration of distributed generators. With the increasing penetration of distributed energy resources in the microgrids, along with advanced control and communication technologies, the traditional microgrid concept is being transited towards the concept of microgrid clustering. It decomposes the distribution system into several interconnected microgrids, effectively reducing problems such as voltage rise, harmonics, poor power factor, reverse power flow and failure of the conventional protection schemes. Microgrid clusters effectively coordinate power sharing among microgrids and the main grid, improving the stability, reliability and efficiency of the distribution network at the consumption premises. Despite the evident benefits of microgrid clusters to the consumers and the electrical utility, there are challenges to overcome before adopting the microgrid cluster concept. This paper is aimed at critically reviewing the challenges in design aspects of microgrid clustering. Categorization of multi-microgrids into different architectures based on the layout of the interconnections, evaluation of reported control techniques in microgrid clustering and multi-microgrid protection aspects are presented, highlighting the possible areas of future research that would improve the operational aspects of microgrid clusters.

    Citation: W. E. P. Sampath Ediriweera, N. W. A. Lidula. Design and protection of microgrid clusters: A comprehensive review[J]. AIMS Energy, 2022, 10(3): 375-411. doi: 10.3934/energy.2022020

    Related Papers:

  • A microgrid is a concept that has been developed with the increasing penetration of distributed generators. With the increasing penetration of distributed energy resources in the microgrids, along with advanced control and communication technologies, the traditional microgrid concept is being transited towards the concept of microgrid clustering. It decomposes the distribution system into several interconnected microgrids, effectively reducing problems such as voltage rise, harmonics, poor power factor, reverse power flow and failure of the conventional protection schemes. Microgrid clusters effectively coordinate power sharing among microgrids and the main grid, improving the stability, reliability and efficiency of the distribution network at the consumption premises. Despite the evident benefits of microgrid clusters to the consumers and the electrical utility, there are challenges to overcome before adopting the microgrid cluster concept. This paper is aimed at critically reviewing the challenges in design aspects of microgrid clustering. Categorization of multi-microgrids into different architectures based on the layout of the interconnections, evaluation of reported control techniques in microgrid clustering and multi-microgrid protection aspects are presented, highlighting the possible areas of future research that would improve the operational aspects of microgrid clusters.



    加载中


    [1] Lau LC, Lee KT, Mohamed AR (2012) Global warming mitigation and renewable energy policy development from the Kyoto Protocol to the Copenhagen Accord-A comment. Renewable Sustainable Energy Rev 16: 5280-5284. https://doi.org/10.1016/j.rser.2012.04.006 doi: 10.1016/j.rser.2012.04.006
    [2] Burugu S, Bhuvaneswari S (2015) Control of microgrid-a review. 2014 International Conference on Advances in Green Energy, ICAGE 2014, 18-25, 02, 2015. Available from: https://ieeexplore.ieee.org/document/7050138.
    [3] Kroposki B (2017) Integrating high levels of variable renewable energy into electric power systems. J Mod Power Syst Clean Energy 5: 831-837. https://doi.org/10.1007/s40565-017-0339-3 doi: 10.1007/s40565-017-0339-3
    [4] Tan WS, Hassan MY, Majid MS, et al. (2013) Optimal distributed renewable generation planning: A review of different approaches. Renewable Sustainable Energy Rev 18: 626-645. https://doi.org/10.1016/j.rser.2012.10.039 doi: 10.1016/j.rser.2012.10.039
    [5] Lidula N, Rajapakse A (2011) Microgrids research: A review of experimental microgrids and test systems. Renewable Sustainable Energy Rev 15: 186-202. https://doi.org/10.1016/j.rser.2010.09.041 doi: 10.1016/j.rser.2010.09.041
    [6] Hirsch A, Parag Y, Guerrero J (2018) Microgrids: A review of technologies, key drivers, and outstanding issues. Renewable Sustainable Energy Rev 90: 402-411. https://doi.org/10.1016/j.rser.2018.03.040 doi: 10.1016/j.rser.2018.03.040
    [7] Li Y, Nejabatkhah F (2014) Overview of control, integration and energy management of microgrids. J Mod Power Syst Clean Energy 2: 212-222. https://doi.org/10.1007/s40565-014-0063-1 doi: 10.1007/s40565-014-0063-1
    [8] Guerrero JM, Vasquez JC, Matas J, et al. (2011) Hierarchical control of droop-controlled AC and DC microgrids-A general approach toward standardization. IEEE Trans Ind Electron 58: 158-172. https://doi.org/10.1109/TIE.2010.2066534 doi: 10.1109/TIE.2010.2066534
    [9] Xu Z, Yang P, Zheng C, et al. (2018) Analysis on the organization and development of multi-microgrids. Renewable Sustainable Energy Rev 81: 2204-2216. https://doi.org/10.1016/j.rser.2017.06.032 doi: 10.1016/j.rser.2017.06.032
    [10] Moslehi K, Kumar R (2010) A reliability perspective of the smart grid. IEEE Trans Smart Grid 1: 57-64. https://doi.org/10.1109/TSG.2010.2046346 doi: 10.1109/TSG.2010.2046346
    [11] Wei J (2019) Modeling and coordination of interconnected microgrids using distributed artificial intelligence approaches. Available from: https://tel.archives-ouvertes.fr/tel-02511243.
    [12] Saleh MS, Althaibani A, Esa Y, et al. (2015) Impact of clustering microgrids on their stability and resilience during blackouts. Proc Int Conf Smart Grid Clean Energy Technol. ICSGCE (ICSGCE): 195-200. https://doi.org/10.1109/ICSGCE.2015.7454295
    [13] Shahnia F, Chandrasena R, Rajakaruna S, et al. (2014) Interconnected autonomous microgrids in smart grids with self-healing capability. https://doi.org/10.1007/978-981-4585-27-9_15
    [14] Hossain MJ, Mahmud MA, Milano F, et al. (2016) Design of robust distributed control for interconnected microgrids. IEEE Trans Smart Grid 7: 2724-2735. https://doi.org/10.1109/TSG.2015.2502618 doi: 10.1109/TSG.2015.2502618
    [15] Utkarsh K, Srinivasan D, Trivedi A, et al. (2019) Distributed model-predictive real-time optimal operation of a network of smart microgrids. IEEE Trans Smart Grid 10: 2833-2845. https://doi.org/10.1109/TSG.2018.2810897 doi: 10.1109/TSG.2018.2810897
    [16] Bandeiras F, Pinheiro E, Gomes M, et al. (2020) Review of the cooperation and operation of microgrid clusters. Renewable Sustainable Energy Rev 133: 110-311. https://doi.org/10.1016/j.rser.2020.110311 doi: 10.1016/j.rser.2020.110311
    [17] Islam M, Yang F, Amin M (2021) Control and optimization of networked microgrids: A review. IET Renew Power Gener, 15. https://doi.org/10.1049/rpg2.12111 doi: 10.1049/rpg2.12111
    [18] Bullich-Massagué E, Díaz-González F, Aragüés-Peñalba M, et al. (2018) Microgrid clustering architectures. Appl Energy 212: 340-361. https://doi.org/10.1016/j.apenergy.2017.12.048 doi: 10.1016/j.apenergy.2017.12.048
    [19] Zou H, Mao S, Wang Y, et al. (2019) A survey of energy management in interconnected multi-microgrids. IEEE Access 72: 158-169. https://doi.org/10.1109/ACCESS.2019.2920008 doi: 10.1109/ACCESS.2019.2920008
    [20] Alam MN, Chakrabarti S, Ghosh A (2019) Networked microgrids: State-of-the-art and future perspectives. IEEE Trans Industr Inform 15: 1238-1250. https://doi.org/10.1109/TⅡ.2018.2881540 doi: 10.1109/TⅡ.2018.2881540
    [21] Zhou Q, Shahidehpour M, Paaso A, et al. (2020) Distributed control and communication strategies in networked microgrids. IEEE Commun Surv Tutor 22: 2586-2633. https://doi.org/10.1109/COMST.2020.3023963 doi: 10.1109/COMST.2020.3023963
    [22] Li Z, Shahidehpour M, Aminifar F, et al. (2017) Networked microgrids for enhancing the power system resilience. Proc IEEE 105: 1289-1310. https://doi.org/10.1109/JPROC.2017.2685558 doi: 10.1109/JPROC.2017.2685558
    [23] Gazijahani FS, Salehi J (2017) Stochastic multi-objective framework for optimal dynamic planning of interconnected microgrids. ET Renewable Power Gener 11. https://doi.org/10.1049/iet-rpg.2017.0278 doi: 10.1049/iet-rpg.2017.0278
    [24] Shahidehpour M, Li Z, Bahramirad S, et al. (2017) Networked microgrids: Exploring the possibilities of the iit-bronzeville grid. IEEE Power Energy Mag 15: 63-71. https://doi.org/10.1109/MPE.2017.2688599 doi: 10.1109/MPE.2017.2688599
    [25] Backhaus SN, Dobriansky L, Glover S, et al. (2016) Networked microgrids scoping study. Available from: https://www.osti.gov/biblio/1334654.
    [26] Arif A, Wang Z (2017) Networked microgrids for service restoration in resilient distribution systems. IET Gener Transm Distrib 11: 3612-3619. https://doi.org/10.1049/iet-gtd.2017.0380 doi: 10.1049/iet-gtd.2017.0380
    [27] Golsorkhi MS, Hill D, Karshenas H (2017) Distributed voltage control and power management of networked microgrids. IEEE J Emergy Sel Top Power Electron 11: 1-1. Availabel from: https://ieeexplore.ieee.org/document/8106675.
    [28] Gazijahani FS, Salehi J (2017) Stochastic multi-objective framework for optimal dynamic planning of interconnected microgrids. ET Renew Power Gener 11: 1749-1759. https://doi.org/10.1049/iet-rpg.2017.0278 doi: 10.1049/iet-rpg.2017.0278
    [29] Yuan W, Wang J, Qiu F, et al. (2016) Robust optimization-based resilient distribution network planning against natural disasters. IEEE Trans Smart Grid 7: 2817-2826. https://doi.org/10.1109/TSG.2015.2513048 doi: 10.1109/TSG.2015.2513048
    [30] Schneider KP, Tuffner FK, Elizondo MA, et al. (2018) Enabling resiliency operations across multiple microgrids with grid friendly appliance controllers. IEEE Trans Smart Grid 9: 4755-4764. https://doi.org/10.1109/TSG.2017.2669642 doi: 10.1109/TSG.2017.2669642
    [31] Zhang F, Zhao H, Hong M (2015) Operation of networked microgrids in a distribution system. CSEE J Power Energy Syst 1: 12-21. https://doi.org/10.1016/j.ijepes.2014.09.027 doi: 10.1016/j.ijepes.2014.09.027
    [32] Hu X (2016) Co-optimisation for distribution networks with multi-microgrids based on a two- stage optimisation model with dynamic electricity pricing. IET Gener Transm Distrib 11: 2251-2259. https://doi.org/10.1049/iet-gtd.2016.1602 doi: 10.1049/iet-gtd.2016.1602
    [33] Li Y, Zhang P, Luh PB (2018) Formal analysis of networked microgrids dynamics. IEEE Trans Power Syst 33: 3418-3427. https://doi.org/10.1109/TPWRS.2017.2780804 doi: 10.1109/TPWRS.2017.2780804
    [34] Wang Z, Chen B, Wang J, et al. (2015) Coordinated energy management of networked microgrids in distribution systems. IEEE Trans Smart Grid 6: 45-53. https://doi.org/10.1109/TSG.2014.2329846 doi: 10.1109/TSG.2014.2329846
    [35] Wang Z, Chen B, Wang J, et al. (2016) Decentralized energy management system for networked microgrids in grid-connected and islanded modes. IEEE Trans Smart Grid 7: 1097-1105. https://doi.org/10.1109/TSG.2015.2427371 doi: 10.1109/TSG.2015.2427371
    [36] Pulcherio M, Illindala MS, Choi J, et al. (2018) Robust microgrid clustering in a distribution system with inverter-based DERs. IEEE Trans Ind Appl 54: 5152-5162. https://doi.org/10.1109/TIA.2018.2853039 doi: 10.1109/TIA.2018.2853039
    [37] Parisio A, Wiezorek C, Kyntaja T, et al. (2017) Cooperative MPC-based energy management for networked microgrids. IEEE Trans Smart Grid 8: 3066-3074. https://doi.org/10.1109/TSG.2017.2726941 doi: 10.1109/TSG.2017.2726941
    [38] Xu Z, Yang P, Zhang Y, et al. (2016) Control devices development of multi-microgrids based on hierarchical structure. IET Gener Transm Distrib 10: 4249-4256. https://doi.org/10.1049/iet-gtd.2016.0796 doi: 10.1049/iet-gtd.2016.0796
    [39] John T, Lam SP (2017) Voltage and frequency control during microgrid islanding in a multi-area multi-microgrid system. IET Gener Transm Distrib 11: 1502-1512. https://doi.org/10.1049/iet-gtd.2016.1113 doi: 10.1049/iet-gtd.2016.1113
    [40] Liu T, Tan X, Sun B, et al. (2018) Energy management of cooperative microgrids: A distributed optimization approach. Int J Electr Power Energy Syst 96: 335-346. https://doi.org/10.1016/j.ijepes.2017.10.021 doi: 10.1016/j.ijepes.2017.10.021
    [41] Arif A, Wang Z (2017) Networked microgrids for service restoration in resilient distribution systems. IET Gener Transm Distrib 11: 3612-3619. https://doi.org/10.1049/iet-gtd.2017.0380 doi: 10.1049/iet-gtd.2017.0380
    [42] Nikmehr N, Ravadanegh SN (2016) Reliability evaluation of multi-microgrids considering optimal operation of small scale energy zones under load-generation uncertainties. Int J Electr Power Energy Syst 78: 80-87. https://doi.org/10.1016/j.ijepes.2015.11.094 doi: 10.1016/j.ijepes.2015.11.094
    [43] Xi W, Xiaoyan Q, Runzhou J, et al. (2014) Economic operation of multi-microgrids containing energy storage system. 2014 International Conference on Power System Technology. Chengdu, China: IEEE. 1712-1716. Available from: https://ieeexplore.ieee.org/document/6993514
    [44] Dagdougui H, Sacile R (2014) Decentralized control of the power flows in a network of smart microgrids modeled as a team of cooperative agents. EEE Trans Control Syst Technol 22: 510-519. https://doi.org/10.1109/TCST.2013.2261071 doi: 10.1109/TCST.2013.2261071
    [45] Jadhav AM, Patne NR (2017) Priority-based energy scheduling in a smart distributed network with multiple microgrids. IEEE Trans Ind Inform 13: 3134-3143. https://doi.org/10.1109/TⅡ.2017.2671923 doi: 10.1109/TⅡ.2017.2671923
    [46] Gregoratti D, Matamoros J (2015) Distributed energy trading: The multiple-microgrid case. IEEE Trans Ind Electron 62: 2551-2559. https://doi.org/10.1109/TIE.2014.2352592 doi: 10.1109/TIE.2014.2352592
    [47] Choobineh M, Silva-Ortiz D, Mohagheghi S (2018) An automation scheme for emergency operation of a multi-microgrid industrial park. IEEE Trans Ind Appl 54: 6450-6459. https://doi.org/10.1109/TIA.2018.2851210 doi: 10.1109/TIA.2018.2851210
    [48] Hussain A, Bui VH, Kim HM (2016) Robust optimization-based scheduling of multi-microgrids considering uncertainties. Energies 9. https://doi.org/10.3390/en9040278 doi: 10.3390/en9040278
    [49] Rahbar K, Chai CC, Zhang R (2018) Energy cooperation optimization in microgrids with renew-able energy integration. IEEE Trans Smart Grid 9: 1482-1493. https://doi.org/10.1109/TSG.2016.2600863 doi: 10.1109/TSG.2016.2600863
    [50] Wang H, Huang J (2018) Incentivizing energy trading for interconnected microgrids. IEEE Trans Smart Grid 9: 2647-2657. https://doi.org/10.1109/TSG.2016.2614988 doi: 10.1109/TSG.2016.2614988
    [51] Nilsson D, Sannino A (2004) Efficiency analysis of low and medium voltage dc distribution systems. IEEE Power Energy Soc Gen Meet, 2004 2: 2315-2321. https://doi.org/10.1109/PES.2004.1373299 doi: 10.1109/PES.2004.1373299
    [52] Hammerstrom DJ (2007) AC versus DC distribution systemsdid we get it right? 2007 IEEE Power Engineering Society General Meeting. Tampa, FL, USA: IEEE, 1-5. https://doi.org/10.1109/PES.2007.386130
    [53] Larruskain DM, Zamora I, Mazon AJ, et al. (2005) Transmission and distribution networks: AC versus DC. 9th Spanish-Portuguese Congress on Electrical Engineering. Marbella, Spain. Available from: http://www.solarec-egypt.com/resources/Larruskain_HVAC_to_HVDC.pdf.
    [54] Planas E, Andreu J, Gaxrate JI, et al. (2015) AC and DC technology in microgrids: A review. Renewable Sustainable Energy Rev 43: 726-749. https://doi.org/10.1016/j.rser.2014.11.067 doi: 10.1016/j.rser.2014.11.067
    [55] Justo JJ, Mwasilu F, Lee J, et al. (2013) AC-microgrids versus DC-microgrids with distributed energy resources: A review. Renewable Sustainable Energy Rev 24: 387-405. https://doi.org/10.1016/j.rser.2013.03.067 doi: 10.1016/j.rser.2013.03.067
    [56] Rodriguez-Bernuz JM, Prieto-Araujo E, Girbau-Llistuella F, et al. (2015) Experimental validation of a single-phase intelligent power router. Sustainable Energy Grids Netw 4: 1-15. https://doi.org/10.1016/j.segan.2015.07.001 doi: 10.1016/j.segan.2015.07.001
    [57] Kheraluwala MN, Gascoigne RW, Divan DM, et al. (1992) Performance characterization of a high-power dual active bridge DC-to-DC converter. IEEE Trans Ind Appl 28: 1294-1301. https://doi.org/10.1109/28.175280 doi: 10.1109/28.175280
    [58] Krismer F, Biela J, Kolar JW (2005) A comparative evaluation of isolated bi-directional DC/DC converters with wide input and output voltage range. Fortieth IAS Annu Meet Conf Rec Ind 1: 599-606. https://doi.org/10.1109/IAS.2005.1518368 doi: 10.1109/IAS.2005.1518368
    [59] Fan H, Li H (2010) A novel phase-shift bidirectional DC-DC converter with an extended high-efficiency range for 20 kVA solid-state transformer. 2010 IEEE Energy Convers Congr Expo, 3870-3876. https://doi.org/10.1109/ECCE.2010.5617771 doi: 10.1109/ECCE.2010.5617771
    [60] Li H, Peng FZ, Lawler JS (2003) A natural ZVS medium-power bidirectional DC-DC converter with the minimum number of devices. IEEE Trans Ind Appl 39: 525-535. https://doi.org/10.1109/TIA.2003.808965 doi: 10.1109/TIA.2003.808965
    [61] Yamamoto K, Hiraki E, Tanaka T, et al. (2006) Bidirectional DC-DC converter with full-bridge/push-pull circuit for automobile electric power systems. Proc 37th IEEE Power Electronics Specialists Conference, 1-5. https://doi.org/10.1109/PESC.2006.1711776
    [62] Nilsson D, Sannino A (2004) Efficiency analysis of low- and medium- voltage dc distribution systems. IEEE Power Energy Soc Gen Meet, 2004 2: 2315-2321. https://doi.org/10.1109/PES.2004.1373299 doi: 10.1109/PES.2004.1373299
    [63] Bmer J, Burges K, Nabe C (2020) All island tso facilitation of renewables studies. Available from: http://www.ecofys.com/en/publication/all-island-tso-facilitation-of-renewablesstudies/.
    [64] Shahidehpour M, Tinney F, Fu Y (2015) Impact of security on power systems operation. Proc IEEE 93: 2013-2025. https://doi.org/10.1109/JPROC.2005.857490 doi: 10.1109/JPROC.2005.857490
    [65] Golieva A (2015) Low short circuit ratio connection of wind power plants, Ph.D. dissertation, 2015. Available from: https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/2368039.
    [66] Lindn K, Jacobson B, Bollen M, et al. (2010) Reliability study methodology for HVDC grids. Available from: http://ltu.diva-portal.org/smash/record.jsf?pid=diva2%3A1003266&dswid=4389.
    [67] Ravindranath B, Chander M (1977) Power System Protection and Switchgear. Available from: https://books.google.lk/books?id=I3N4aQwfSr4C.
    [68] Paithankar Y, Bhide S (2010) Fundamentals of power system protection. Available from: https://books.google.lk/books?id=1E-lzwq5J-MC.
    [69] Nikkhajoei H, Lasseter RH (2007) Microgrid protection. 2007 IEEE Power Engineering Society General Meeting.Tampa, FL, USA: IEEE, 1-6. https://doi.org/10.1109/PES.2007.385805
    [70] Gomis-Bellmunt O, Liang J, Ekanayake J, et al. (2011) Topologies of multiterminal HVDC-VSC transmission for large offshore wind farms. Electr Power Syst Res 81: 271-281. https://doi.org/10.1016/j.epsr.2010.09.006 doi: 10.1016/j.epsr.2010.09.006
    [71] Gopalan SA, Sreeram V, Iu HH (2014) A review of coordination strategies and protection schemes for microgrids. Renewable Sustainable Energy Rev 32: 222-228. https://doi.org/10.1016/j.rser.2014.01.037 doi: 10.1016/j.rser.2014.01.037
    [72] Sortomme E, Venkata SS, Mitra J (2010) Microgrid protection using communication-assisted digital relays. IEEE Trans Power Deliv 25: 2789-2796. https://doi.org/10.1109/TPWRD.2009.2035810 doi: 10.1109/TPWRD.2009.2035810
    [73] Buigues G, Dysxko A, Valverde V, et al. (2013) Microgrid protection: Technical challenges and existing techniques. Renewable Energy Power Qual J 3: 222-227. https://doi.org/10.24084/repqj11.262 doi: 10.24084/repqj11.262
    [74] Mirsaeidi S, Said DM, Mustafa MW, et al. (2014) Progress and problems in micro-grid protection schemes. Renewable Sustainable Energy Rev 37: 834-839. https://doi.org/10.1016/j.rser.2014.05.044 doi: 10.1016/j.rser.2014.05.044
    [75] Khan S (2013) Power system protection. Available from: https://books.google.lk/books?id=2c583URw8fUC.
    [76] Olivares DE, Mehrizi-Sani A, Etemadi AH, et al. (2014) Trends in microgrid control. IEEE Trans Smart Grid 5: 1905-1919. https://doi.org/10.1109/TSG.2013.2295514 doi: 10.1109/TSG.2013.2295514
    [77] Shahnia F, Chandrasena R, Rajakaruna S, et al. (2014) Primary control level of parallel dis-tributed energy resources converters in system of multiple interconnected autonomous microgrids within self-healing networks. IET Gener Transm Distrib 8: 203-222. https://doi.org/10.1049/iet-gtd.2013.0126 doi: 10.1049/iet-gtd.2013.0126
    [78] Peyghami S, Mokhtari H, Loh PC, et al. (2016) Distributed primary and secondary power sharing in a droop-controlled lvdc microgrid with merged ac and dc characteristics. IEEE Trans Smart Grid 9: 2284-2294. https://doi.org/10.1109/TSG.2016.2609853 doi: 10.1109/TSG.2016.2609853
    [79] Han Y, Zhang K, Li H, et al. (2018) MAS-based distributed coordinated control and optimization in microgrid and microgrid clusters: A comprehensive overview. IEEE Trans Power Electron 33: 6488-6508. https://doi.org/10.1109/TPEL.2017.2761438 doi: 10.1109/TPEL.2017.2761438
    [80] Serban I, Céspedes S, Marinescu C, et al. (2020) Communication requirements in microgrids: A practical survey. IEEE Access 8: 47694-47712. https://doi.org/10.1109/ACCESS.2020.2977928 doi: 10.1109/ACCESS.2020.2977928
    [81] IEEE Standard for the Specification of Microgrid Controllers. IEEE Std 2030.7-2017: 1-43. Available from: https://ieeexplore.ieee.org/servlet/opac?punumber=8340142.
    [82] Li H, Dimitrovski A, Song JB, et al. (2014) Communication infrastructure design in cyber physical systems with applications in smart grids: A hybrid system framework. IEEE Commun Surv 16: 1689-1708. https://doi.org/10.1109/SURV.2014.052914.00130 doi: 10.1109/SURV.2014.052914.00130
    [83] Nejabatkhah F, Li YW, Liang H, et al. (2021) Cyber-security of smart microgrids: A survey. Energies 14: 1-27. https://doi.org/10.3390/en14010027 doi: 10.3390/en14010027
    [84] Hossain-McKenzie S, Reno MJ, Bent R, et al. (2020) Cybersecurity of networked microgrids: Challenges potential solutions and future directions. United States. https://doi.org/10.2172/1738879
    [85] Zhang Y, Zhang T, Wang R, et al. (2016) Dynamic dispatch of isolated neighboring multi-microgrids based on model predictive control. 2016 International Conference on Smart Grid and Clean Energy Technologies (ICSGCE). Chengdu, China: IEEE, 50-55. https://doi.org/10.1109/ICSGCE.2016.7876024
    [86] Song NO, Lee JH, Kim HM, et al. (2015) Optimal energy management of multi-microgrids with sequentially coordinated operations. Energies 8: 8371-8390. https://doi.org/10.3390/en8088371 doi: 10.3390/en8088371
    [87] Celik B, Roche R, Bouquain D, et al. (2017) Coordinated neighborhood energy sharing using game theory and multi-agent systems. Manchester, UK: IEEE, 1-6. https://doi.org/10.1109/PTC.2017.7980820
    [88] Karavas CS, Kyriakarakos G, Arvanitis KG, et al. (2015) A multi-agent decentralized energy management system based on distributed intelligence for the design and control of autonomous polygeneration microgrids. Energy Convers Manag 103: 166-179. https://doi.org/10.1016/j.enconman.2015.06.021 doi: 10.1016/j.enconman.2015.06.021
    [89] Yu H, Niu S, Shao Z, et al. (2022) A scalable and reconfigurable hybrid AC/DC microgrid clustering architecture with decentralized control for coordinated operation. Int J Electr Power Energy Syst 135. https://doi.org/10.1016/j.ijepes.2021.107476 doi: 10.1016/j.ijepes.2021.107476
    [90] Yu H, Niu S, Zhang Y, et al. (2020) An integrated and reconfigurable hybrid AC/DC microgrid architecture with autonomous power flow control for nearly/net zero energy buildings. Appl Energy 263. https://doi.org/10.1016/j.apenergy.2020.114610 doi: 10.1016/j.apenergy.2020.114610
    [91] Mao M, Wang Y, Chang L, et al. (2017) Operation optimization for multi-microgrids based on centralized-decentralized hybrid hierarchical energy management. 2017 IEEE Energy Conversion Congress and Exposition (ECCE). Cincinnati, OH, USA: IEEE. 4813-4820. https://doi.org/10.1109/ECCE.2017.8096818
    [92] Kou P, Liang D, Gao L (2017) Distributed empc of multiple microgrids for coordinated stochastic energy management. Appl Energy 185: 939-952. https://doi.org/10.1016/j.apenergy.2016.09.092 doi: 10.1016/j.apenergy.2016.09.092
    [93] Bui VH, Hussain A, Kim HM (2018) A multiagent-based hierarchical energy management strategy for multi-microgrids considering adjustable power and demand response. IEEE Trans Smart Grid 9: 1323-1333. https://doi.org/10.1109/TSG.2016.2585671 doi: 10.1109/TSG.2016.2585671
    [94] Kou P, Liang D, Gao L (2017) Distributed EMPC of multiple microgrids for coordinated stochastic energy management. Appl Energy 185: 939-952. https://doi.org/10.1016/j.apenergy.2016.09.092 doi: 10.1016/j.apenergy.2016.09.092
    [95] Zhang W, Xu Y (2019) Distributed optimal control for multiple microgrids in a distribution network. IEEE Trans Smart Grid 10: 3765-3779. https://doi.org/10.1109/TSG.2018.2834921 doi: 10.1109/TSG.2018.2834921
    [96] Tang F, Guerrero JM, Vasquez JC, et al. (2015) Distributed active synchronization strategy for microgrid seamless reconnection to the grid under unbalance and harmonic distortion. IEEE Trans Smart Grid 6: 2757-2769. https://doi.org/10.1109/TSG.2015.2406668 doi: 10.1109/TSG.2015.2406668
    [97] Cupertino F, Lavopa E, Zanchetta P, et al. (2011) Running DFT-based PLL algorithm for frequency, phase, and amplitude tracking in aircraft electrical systems. IEEE Trans Ind Electron 58: 1027-1035. https://doi.org/10.1109/TIE.2010.2048293 doi: 10.1109/TIE.2010.2048293
    [98] Overney F, Mortara A (2014) Synchronization of sampling-based measuring systesm. IEEE Trans Instrum Meas 63: 89-95. https://doi.org/10.1109/TIM.2013.2275204 doi: 10.1109/TIM.2013.2275204
    [99] Reza S, Ciobotaru M, Agelidis VG (2015) Single-phase grid voltage frequency estimation using teager energy operator-based technique. IEEE J Emerg Sel Top Power Electron 3: 1218-1227. https://doi.org/10.1109/JESTPE.2015.2405094 doi: 10.1109/JESTPE.2015.2405094
    [100] Babu BC, Sridharan K, Rosolowski E, et al. (2014) Analysis of SDFT based phase detection system for grid synchronization of distributed generation systems. Eng Sci Technol Int J 17: 270-278. https://doi.org/10.1016/j.jestch.2014.07.005 doi: 10.1016/j.jestch.2014.07.005
    [101] Ali Z, Christofides N, Hadjidemetriou L, et al. (2018) Three-phase phase-locked loop synchronization algorithms for grid-connected renewable energy systems: A review. Renewable Sustainable Energy Rev 90: 434-452. https://doi.org/10.1016/j.rser.2018.03.086 doi: 10.1016/j.rser.2018.03.086
    [102] Lai MF, Nakano M (1996) Special section on phase-locked loop techniques. IEEE Trans Ind Electron 43: 607-608. https://doi.org/10.1109/41.544546 doi: 10.1109/41.544546
    [103] Chen LR (2004) PLL-based battery charge circuit topology. IEEE Trans Ind Electron 51: 1344-1346. https://doi.org/10.1109/TIE.2004.837891 doi: 10.1109/TIE.2004.837891
    [104] Karavas CS, Kyriakarakos G, Arvanitis KG, et al. (2015) A multi-agent decentralized energy management system based on distributed intelligence for the design and control of autonomous polygeneration microgrids. Energy Convers Manag 103: 166-179. https://doi.org/10.1016/j.enconman.2015.06.021 doi: 10.1016/j.enconman.2015.06.021
    [105] Golestan S, Guerrero JM, Vasquez JC, et al. (2018) Modeling, tuning, and performance comparison of second-order-generalized-integrator-based flls. IEEE Trans Power Electron 33: 229-239. https://doi.org/10.1109/TPEL.2018.2808246 doi: 10.1109/TPEL.2018.2808246
    [106] Simon G, Pintelon R, Sujbert L, et al. (2002) An efficient nonlinear least square multisine fitting algorithm. IEEE Trans Instrum Meas 51: 750-755. https://doi.org/10.1109/TIM.2002.803304 doi: 10.1109/TIM.2002.803304
    [107] Lai L, Chan W, Tse C, et al. (1999) Real-time frequency and harmonic evaluation using artificial neural networks. IEEE Trans Power Deliv 14: 52-59. https://doi.org/10.1109/61.736681 doi: 10.1109/61.736681
    [108] Gopalan S (2015) More robust protection strategies for multi-microgrids, Ph.D. dissertation, 2015. Available from: https://research-repository.uwa.edu.au/en/publications/more-robust-protection-strategies-for-multi-microgrids.
    [109] Zhang F, Mu L (2019) New protection scheme for internal fault of multi-microgrid. Prot Control Mod Power Syst 4: 1-12. https://doi.org/10.1186/s41601-019-0127-3 doi: 10.1186/s41601-019-0127-3
    [110] Basak P, Chowdhury S, Halder nee Dey S, et al. (2012) A literature review on integration of distributed energy resources in the perspective of control, protection and stability of microgrid. Renewable Sustainable Energy Rev 16: 5545-5556. https://doi.org/10.1016/j.rser.2012.05.043 doi: 10.1016/j.rser.2012.05.043
    [111] Planas E, Muro AGD, Andreu J, et al. (2013) General aspects, hierarchical controls and droop methods in microgrids: A review. Renewable Sustainable Energy Rev 17: 147-159. https://doi.org/10.1016/j.rser.2012.09.032 doi: 10.1016/j.rser.2012.09.032
    [112] Jiayi H, Chuanwen J, Rong X (2008) A review on distributed energy resources and microgrid. Renewable Sustainable Energy Rev 12: 2472-2483. https://doi.org/10.1016/j.rser.2007.06.004 doi: 10.1016/j.rser.2007.06.004
    [113] Yaqobi MA, Matayoshi H, Danish MSS, et al. (2019) Low-voltage solid-state DC breaker for fault protection applications in isolated DC microgrid cluster. Appl Sci, 9. https://doi.org/10.3390/app9040723 doi: 10.3390/app9040723
    [114] Fletcher SD, Norman PJ, Galloway SJ, et al. (2012) Optimizing the roles of unit and non-unit protection methods within dc microgrids. IEEE Trans Smart Grid 3: 2079-2087. https://doi.org/10.1109/TSG.2012.2198499 doi: 10.1109/TSG.2012.2198499
    [115] Monadi M, Amin Zamani M, Candela JI, et al. (2015) Protection of AC and DC distribution systems embedding distributed energy resources: A comparative review and analysis. Renewable Sustainable Energy Rev 51: 1578-1593. https://doi.org/10.1016/j.rser.2015.07.013 doi: 10.1016/j.rser.2015.07.013
    [116] Abdali A, Noroozian R, Mazlumi K (2019) Simultaneous control and protection schemes for DC multi microgrids systems. Int J Electr Power Energy Syst 104: 230-245. https://doi.org/10.1016/j.ijepes.2018.06.054 doi: 10.1016/j.ijepes.2018.06.054
    [117] Gopalan S, Sreeram V, Iu Hand Mishra Y (2019) A flexible protection scheme for an islanded multi-microgrid. IEEE PES ISGT Europe 2013. Lyngby, Denmark: IEEE, 1-5. https://doi.org/10.1109/ISGTEurope.2013.6695358
    [118] Che L, Khodayar ME, Shahidehpour M (2014) Adaptive protection system for microgrids: Protection practices of a functional microgrid system. IEEE Electrif Mag 2: 66-80. https://doi.org/10.1109/MELE.2013.2297031 doi: 10.1109/MELE.2013.2297031
    [119] Naraghipour K, Ahmed K, Booth C (2020) A comprehensive review of islanding detection methods for distribution systems. Proc 7th Int IEEE Conf Renew Energy Res Appl, 428-433. https://doi.org/10.1109/ICRERA49962.2020.9242850
    [120] Worku MY, Hassan MA, Maraaba LS, et al. (2021) Islanding detection methods for microgrids: A comprehensive review. Mathematics 9: 3174. https://doi.org/10.3390/math9243174 doi: 10.3390/math9243174
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3868) PDF downloads(424) Cited by(9)

Article outline

Figures and Tables

Figures(17)  /  Tables(11)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog