Research article Special Issues

Optimization of the perfect absorber for solar energy harvesting based on the cone-like nanostructures

  • Received: 24 February 2021 Accepted: 01 June 2021 Published: 11 June 2021
  • The effects of materials, geometric parameters, and morphologies on the absorption properties of absorbers with the cone-like nanostructures surrounded by water have been numerically studied. The underlying mechanisms of the perfect absorption of solar energy are revealed by gradient index effect with electric field distributions. It shows that the absorber achieves perfect absorption for solar energy harvesting with nanocones made of Chromium (Cr), Nickel (Ni), Platinum (Pt), Titanium (Ti), and Bismuth Telluride (Bi2Te3), while the perfect absorption wavelength region of absorbers with nanocones made of noble metals (Au, Ag) is 300 nm to around 650 nm, which is far narrower than the solar spectrum. In addition, geometric parameters of the nanocones on the surface of the metamaterials make a big difference on the absorption properties of them though there is a small tolerance. Besides, the morphology of the cone makes a little difference on the absorption properties of the absorber, and the absorptance of the absorber increases with the increase of the number of nanocone's sides. Furthermore, the solar absorber with nanocones is sensitive to the incident angle of the light with a small tolerance, but the polarization of the incident light almost makes no difference on the absorption property of the absorber with nanocones.

    Citation: Zhaolong Wang, Guihui Duan, Huigao Duan. Optimization of the perfect absorber for solar energy harvesting based on the cone-like nanostructures[J]. AIMS Energy, 2021, 9(4): 714-726. doi: 10.3934/energy.2021033

    Related Papers:

  • The effects of materials, geometric parameters, and morphologies on the absorption properties of absorbers with the cone-like nanostructures surrounded by water have been numerically studied. The underlying mechanisms of the perfect absorption of solar energy are revealed by gradient index effect with electric field distributions. It shows that the absorber achieves perfect absorption for solar energy harvesting with nanocones made of Chromium (Cr), Nickel (Ni), Platinum (Pt), Titanium (Ti), and Bismuth Telluride (Bi2Te3), while the perfect absorption wavelength region of absorbers with nanocones made of noble metals (Au, Ag) is 300 nm to around 650 nm, which is far narrower than the solar spectrum. In addition, geometric parameters of the nanocones on the surface of the metamaterials make a big difference on the absorption properties of them though there is a small tolerance. Besides, the morphology of the cone makes a little difference on the absorption properties of the absorber, and the absorptance of the absorber increases with the increase of the number of nanocone's sides. Furthermore, the solar absorber with nanocones is sensitive to the incident angle of the light with a small tolerance, but the polarization of the incident light almost makes no difference on the absorption property of the absorber with nanocones.



    加载中


    [1] Linic S, Aslam U, Boerigter C, et al. (2015) Photochemical transformations on plasmonic metal nanoparticles. Nat Mater 14: 567-576. doi: 10.1038/nmat4281
    [2] Takashima T, Hikosaka K, Hirose T (2004) Photosynthesis or persistence: nitrogen allocation in leaves of evergreen and deciduous Quercus species. Plant Cell Environ 27: 1047-1054. doi: 10.1111/j.1365-3040.2004.01209.x
    [3] O'regan B, Grä tzel M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353: 737-740. doi: 10.1038/353737a0
    [4] Chen CJ, Kuang YD, Hu LB (2019) Challenges and opportunities for solar evaporation. Joule 3: 638-718.
    [5] Solangi KH, Badarudin A, Aman MM, et al. (2015) Photochemical transformations on plasmonic metal nanoparticles. Renew Sust Energy Rev 41: 1190-1204. doi: 10.1016/j.rser.2014.08.086
    [6] Wolf M (1974) Solar energy utilization by physical methods. Science 184: 382-386. doi: 10.1126/science.184.4134.382
    [7] Qasuria TA, Alam S, Karimov KS, et al. (2019) Stable perovskite based photodetector in impedance and capacitance mode. Results Phys 15: 102699. doi: 10.1016/j.rinp.2019.102699
    [8] Qasuria TA, Fatima N, Karimov KS, et al. (2020) A novel and stable ultraviolet and infrared intensity sensor in impedance/capacitance modes fabricated from degraded CH3NH3PbI3-Cl-x(x) perovskite materials. J Mater Res Technol 9: 12795-12803. doi: 10.1016/j.jmrt.2020.09.025
    [9] Yang P, Liu K, Chen Q, et al. (2017) Solar-driven simultaneous steam production and electricity generation from salinity. Energy Environ Sci 10: 1923-1927. doi: 10.1039/C7EE01804E
    [10] Neumann O, Feronti C, Neumann AD, et al. (2013) Compact solar autoclave based on steam generation using broadband light-harvesting nanoparticles. Proc Natl Acad Sci 110: 11677-11681. doi: 10.1073/pnas.1310131110
    [11] Lenert A, Bierman DM, Nam Y, et al. (2014) A nanophotonic solar thermophotovoltaic device. Nat Nanotechnol 9: 126-130. doi: 10.1038/nnano.2013.286
    [12] Boghossian AA, Ham MH, Choi JH, et al. (2011) Biomimetic strategies for solar energy conversion: a technical perspective. Energy Environ Sci 4: 3834-3843 doi: 10.1039/c1ee01363g
    [13] Cavusoglu AH, Chen X, Gentine P, et al. (2017) Potential for natural evaporation as a reliable renewable energy resource. Nat Commun 8: 1-9. doi: 10.1038/s41467-017-00581-w
    [14] Lewis NS (2016) Research opportunities to advance solar energy utilization. Scinece 351: aad1920. doi: 10.1126/science.aad1920
    [15] Oki T, Shinjiro K (2006) Global hydrological cycles and world water resources. Science 313: 1068-1072. doi: 10.1126/science.1128845
    [16] Hao J, Zhou L, Qiu M (2011) Nearly total absorption of light and heat generation by plasmonic metamaterials. Phys Rev B 83: 105107.
    [17] Watts CM, Liu X, Padilla WJ (2012) Metamaterial electromagnetic wave absorbers. Adv Mater 24: OP98-OP120.
    [18] Landy NI, Sajuyigbe S, Mock JJ, et al. (2008) A perfect metamaterial absorber. Phys Rev Lett 100: 207402. doi: 10.1103/PhysRevLett.100.207402
    [19] Ni GW, Li G, Boriskina SV, et al. (2016) Steam generation under one sun enabled by a floating structure with thermal concentration. Nat Energy 1: 1-7.
    [20] Neumann O, Urban AS, Day J, et al. (2013) Solar vapor generation enabled by nanoparticles. ACS Nano 7: 42-49. doi: 10.1021/nn304948h
    [21] Fang ZY, Zhen YR, Neumann O, et al. (2013) Evolution of light-induced vapor generation at a liquid-immersed metallic nanoparticle. Nano Lett 13: 1736-1742. doi: 10.1021/nl4003238
    [22] Zhu MW, Li YJ, Chen FJ, et al. (2018) Plasmonic wood for high-efficiency solar steam generation. Adv Energy Mater 8: 1701028. doi: 10.1002/aenm.201701028
    [23] Chen MJ, He YR, Huang J, et al. (2016) Synthesis and solar photo-thermal conversion of Au, Ag, and Au-Ag blended plasmonic nanoparticles. Energy Convers Manage 127: 293-300. doi: 10.1016/j.enconman.2016.09.015
    [24] Richardson HH, Carlson MT, Tandler PJ, et al. (2009) Experimental and theoretical studies of light-to-heat conversion and collective heating effects in metal nanoparticle solutions. Nano Lett 9: 1139-1146. doi: 10.1021/nl8036905
    [25] Baffou G, Girard C, Quidant R (2010) Mapping heat origin in plasmonic structures. Phys Rev Lett 104: 136805. doi: 10.1103/PhysRevLett.104.136805
    [26] Cao L, Barsic DN, Guichard AR, et al. (2007) Plasmon-assisted local temperature control to pattern individual semiconductor nanowires and carbon nanotubes. Nano Lett 7: 3523-3527. doi: 10.1021/nl0722370
    [27] Baffou G, Quidant R, Girard C (2009) Heat generation in plasmonic nanostructures: Influence of morphology. Appl Phys Lett 94: 153109. doi: 10.1063/1.3116645
    [28] Shi L, He YR, Wang XZ, et al. (2018) Recyclable photo-thermal conversion and purification systems via Fe3O4@TiO2 nanoparticles. Energy Convers Manage 171: 272-278. doi: 10.1016/j.enconman.2018.05.106
    [29] Hu Y, Wang RZ, Wang SG, et al. (2016) Multifunctional Fe3O4@Au core/shell nanostars: a unique platform for multimode imaging and photothermal therapy of tumors. Sci Rep 6: 1-12. doi: 10.1038/s41598-016-0001-8
    [30] Wang J, Li YY, Deng L, et al. (2017) High-performance photothermal conversion of narrow-bandgap Ti2O3 nanoparticles. Adv Mater 29: 1603730. doi: 10.1002/adma.201603730
    [31] Chen R, Wu ZJ, Zhang TQ, et al. (2017) Magnetically recyclable self-assembled thin films for highly efficient water evaporation by interfacial solar heating. RSC Adv 7: 19849-19855. doi: 10.1039/C7RA03007J
    [32] Vélez-Cordero JR, Hernández-Cordero J (2015) Heat generation and conduction in PDMS-carbon nanoparticle membranes irradiated with optical fibers. Int J Therm Sci 96: 12-22. doi: 10.1016/j.ijthermalsci.2015.04.009
    [33] Shelby RA, Smith DR, Schultz S (2001) Experimental verification of a negative index of refraction. Science 292: 77-79. doi: 10.1126/science.1058847
    [34] Dutta HS, Goyal AK, Srivastava V, et al. (2016) Coupling light in photonic crystal waveguides: A review. Phnotnic Nanostruct 20: 41-58. doi: 10.1016/j.photonics.2016.04.001
    [35] Smith DR (2004) Metamaterials and negative refractive index. Science 305: 788-792. doi: 10.1126/science.1096796
    [36] Ra'di Y, Asadchy VS, Kosulnikov SU, et al. (2015) Full light absorption in single arrays of spherical nanoparticles.
    [37] Monti M, Alù A, Toscano A, et al. (2019) The design of optical circuit-analog absorbers through electrically small nanoparticles. Photonics 6: 1-11. doi: 10.3390/photonics6010026
    [38] Wang ZL, Zhang ZM, Quan XJ, et al. (2018) A perfect absorber design using a natural hyperbolic material for harvesting solar energy. Sol Energy 159: 329-336. doi: 10.1016/j.solener.2017.11.002
    [39] Tao P, Ni G, Song C (2018) Solar-driven interfacial evaporation. Nat Energy 3: 1031-1041. doi: 10.1038/s41560-018-0260-7
    [40] Zhou L, Tan YL, Ji DX, et al. (2016) Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation. Sci Adv 2: e1501227. doi: 10.1126/sciadv.1501227
    [41] Zhao B, Zhang ZMM (2017) Perfect mid-infrared absorption by hybrid phonon-plasmon polaritons in hBN/metal-grating anisotropic structures. Int J Heat Mass Transf 106: 1025-1034. doi: 10.1016/j.ijheatmasstransfer.2016.10.074
    [42] Hu HF, Ji DX, Zeng X, et al. (2013) Rainbow trapping in hyperbolic metamaterial waveguide. Sci Rep 3: 1249. doi: 10.1038/srep01249
    [43] Liang QQ, Yin Q, Chen L, et al. (2020) Perfect spectrally selective solar absorber with dielectric filled fishnet tungsten grating for solar energy harvesting. Sol Energy Mat Sol C 215: 110654. doi: 10.1016/j.solmat.2020.110664
    [44] Wang KXZ, Yu ZF, Liu V, et al. (2012) Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings. Nano Lett 12: 1616-1619. doi: 10.1021/nl204550q
    [45] Wang KXZ, Yu ZF, Liu V, et al. (2014) Nearly total solar absorption in ultrathin nanostructured iron oxide for efficient photoelectrochemical water splitting. ACS Photonics 1: 235-240. doi: 10.1021/ph4001026
    [46] Wang JX, Liang YZ, Huo PC, et al. (2017) Large-scale broadband absorber based on metallic tungsten nanocone structure. Appl Phys Lett 111: 251102. doi: 10.1063/1.5004520
    [47] Argyropoulos C, Le KQ, Mattiucci N, et al. (2013) Broadband absorbers and selective emitters based on plasmonic Brewster metasurfaces. Phys Rev B 87: 2051112 doi: 10.1103/PhysRevB.87.205112
    [48] Maxwell JC (1864) A dynamical theory of the electromagnetic field, London: Royal Society.
    [49] Yee KS (1966) Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media. IEEE T Anternn Propag 14: 302-307. doi: 10.1109/TAP.1966.1138693
    [50] Feng P, Li WD, Zhang WH (2015) Dispersion engineering of plasmonic nanocomposite for ultrathin broadband optical absorber. Opt Express 23: 2328-2338. doi: 10.1364/OE.23.002328
    [51] Pailk ED (1985) Handbook of optical constants of solids, New York: Academic Press.
    [52] Esslinger M, Vogelgesang R, Talebi N, et al. (2014) Tetradymites as natural hyperbolic materials for the near-infrared to visible. ACS Photonics 1: 1285-1289. doi: 10.1021/ph500296e
    [53] Bohren CF, Huffman DR (1998) Absorption and scattering of light by small particles, New Jersey: Wiley.
    [54] Zhang ZM (2007) Nano/microscale heat transfer, New York: Springer.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3470) PDF downloads(198) Cited by(7)

Article outline

Figures and Tables

Figures(5)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog