Citation: Heidi S. Nygård, Maria Hansen, Yasen Alhaj-Saleh, Piotr Palimąka, Stanisław Pietrzyk, Espen Olsen. Experimental evaluation of chemical systems for CO2 capture by CaO in eutectic CaF2-CaCl2[J]. AIMS Energy, 2019, 7(5): 619-633. doi: 10.3934/energy.2019.5.619
[1] | Chu S (2009) Carbon capture and sequestration. Science 325: 1599. doi: 10.1126/science.1181637 |
[2] | Pires JCM, Martins FG, Alvim-Ferraz MCM, et al. (2011) Recent developments on carbon capture and storage: An overview. Chem Eng Res Des 89: 1446-1460. doi: 10.1016/j.cherd.2011.01.028 |
[3] | MacDowell N, Florin N, Buchard A, et al. (2010) An overview of CO2 capture technologies. Energy Environ Sci 3: 1645-1669. doi: 10.1039/c004106h |
[4] | Dean CC, Blamey J, Florin NH, et al. (2011) The calcium looping cycle for CO2 capture from power generation, cement manufacture and hydrogen production. Chem Eng Res Des 89: 836-855. doi: 10.1016/j.cherd.2010.10.013 |
[5] | Blamey J, Anthony EJ, Wang J, et al. (2010) The calcium looping cycle for large-scale CO2 capture. Prog Energy Combust Sci 36: 260-279. doi: 10.1016/j.pecs.2009.10.001 |
[6] | Grasa GS, Abanades JC (2006) CO2 Capture Capacity of CaO in Long Series of Carbonation/Calcination Cycles. Ind Eng Chem Res 45: 8846-8851. doi: 10.1021/ie0606946 |
[7] | Manovic V, Anthony EJ (2010) Lime-based sorbents for high-temperature CO2 capture-A review of sorbent modification methods. Int J Environ Res Public Health 7: 3129-3140. doi: 10.3390/ijerph7083129 |
[8] | Li Z, Liu Y, Cai N (2013) Understanding the effect of inert support on the reactivity stabilization for synthetic calcium based sorbents. Chem Eng Sci 89: 235-243. doi: 10.1016/j.ces.2012.12.006 |
[9] | Kazi SS, Aranda A, Meyer J, et al. (2014) High performance CaO-based sorbents for pre-and post-combustion CO2 capture at high temperature. Energy Procedia 63: 2207-2215. doi: 10.1016/j.egypro.2014.11.240 |
[10] | Al-Jeboori MJ, Nguyen M, Dean C, et al. (2013) Improvement of limestone-based CO2 sorbents for Ca looping by HBr and other mineral acids. Ind Eng Chem Res 52: 1426-1433. doi: 10.1021/ie302198g |
[11] | Liu W, Yin J, Qin C, et al. (2012) Synthesis of CaO-based sorbents for CO2 capture by a spray-drying technique. Environ Sci Technol 46: 11267-11272. doi: 10.1021/es301783b |
[12] | Stendardo S, Andersen LK, Herce C (2013) Self-activation and effect of regeneration conditions in CO2-carbonate looping with CaO-Ca12Al14O33 sorbent. Chem Eng J 220: 383-394. doi: 10.1016/j.cej.2013.01.045 |
[13] | Olsen E, Tomkute V (2013) Carbon capture in molten salts. Energy Sci Eng 1: 144-150. doi: 10.1002/ese3.24 |
[14] | Bhatia SK, Perlmutter DD (1983) Effect of the product layer on the kinetics of the CO2‐lime reaction. AIChE J 29: 79-86. doi: 10.1002/aic.690290111 |
[15] | Tomkute V, Solheim A, Olsen E (2013) Investigation of high-temperature CO2 capture by CaO in CaCl2 molten salt. Energy Fuels 27: 5373-5379. doi: 10.1021/ef4009899 |
[16] | Tomkute V, Solheim A, Olsen E (2014) CO2 capture by CaO in molten CaF2-CaCl2: Optimization of the process and cyclability of CO2 capture. Energy Fuels 28: 5345-5353. doi: 10.1021/ef5010896 |
[17] | Tomkute V, Solheim A, Sakirzanovas S, et al. (2016) Reactivity of CaO with CO2 in molten CaF2-NaF: formation and decomposition of carbonates. Energy Sci Eng 4: 205-216. doi: 10.1002/ese3.120 |
[18] | Nygård HS, Tomkute V, Olsen E (2017) Kinetics of CO2 Absorption by Calcium Looping in Molten Halide Salts. Energy Procedia 114: 250-258. doi: 10.1016/j.egypro.2017.03.1167 |
[19] | Freidina EB, Fray DJ (351) Phase diagram of the system CaCl2-CaCO3. Thermochim acta 351: 107-108. |
[20] | Lide DR (2004) CRC Handbook of Chemistry and Physics. 85th Edition, Taylor & Francis. |