Citation: Daniela Meleleo, Cesare Sblano. Influence of cholesterol on human calcitonin channel formation. Possible role of sterol as molecular chaperone[J]. AIMS Biophysics, 2019, 6(1): 23-38. doi: 10.3934/biophy.2019.1.23
[1] |
Cho W, Stahelin RV (2005) Membrane-protein interactions in cell signaling and membrane trafficking. Annu Rev Biophys Biomol Struct 34: 119–151. doi: 10.1146/annurev.biophys.33.110502.133337
![]() |
[2] |
McLaughlin S, Wang J, Gambhir A, et al. (2002) PIP(2) and proteins: interactions, organization, and information flow. Annu Rev Biophys Biomol Struct 31: 151–175. doi: 10.1146/annurev.biophys.31.082901.134259
![]() |
[3] |
Moffett S, Brown DA, Linder ME (2000) Lipid-dependent targeting of G proteins into rafts. J Biol Chem 275: 2191–2198. doi: 10.1074/jbc.275.3.2191
![]() |
[4] |
Lee SY, MacKinnon R (2004) A membrane-access mechanism of ion channel inhibition by voltage sensor toxins from spider venom. Nature 430: 232–235. doi: 10.1038/nature02632
![]() |
[5] |
Gura T (2001) Ancient system gets new respect. Science 291: 2068–2071. doi: 10.1126/science.291.5511.2068
![]() |
[6] | Simons K, Toomre D (2000) Lipid rafts and signal transduction. Nat Rev Mol Cell Biol 1: 31–39. |
[7] |
Grouleff J, Irudayam SJ, Skeby KK, et al. (2015) The influence of cholesterol on membrane protein structure, function, and dynamics studied by molecular dynamics simulations. Biochim Biophys Acta 1848: 1783–1795. doi: 10.1016/j.bbamem.2015.03.029
![]() |
[8] | Fantini J, Barrantes FJ (2013) How cholesterol interacts with membrane proteins: an exploration of cholesterol-binding sites including CRAC, CARC, and tilted domains. Front Physiol 4: 31. |
[9] |
Segre GV, Goldring SR (1993) Receptors for secretin, calcitonin, parathyroid hormone (PTH)/PTH-related peptide, vasoactive intestinal peptide, glucagonlike peptide 1, growth hormone-releasing hormone, and glucagon belong to a newly discovered G-protein-linked receptor family. Trends Endocrinol Metab 4: 309–314. doi: 10.1016/1043-2760(93)90071-L
![]() |
[10] |
Rymer DL, Good TA (2001) The role of G protein activation in the toxicity of amyloidogenic Abeta-(1–40), Abeta-(25–35), and bovine calcitonin. J Biol Chem 276: 2523–2530. doi: 10.1074/jbc.M005800200
![]() |
[11] |
Kamihira M, Naito A, Tuzi S, et al. (2000) Conformational transitions and fibrillation mechanism of human calcitonin as studied by high-resolution solid-state 13C NMR. Protein Sci 9: 867–877. doi: 10.1110/ps.9.5.867
![]() |
[12] |
Reches M, Porat Y, Gazit E (2002) Amyloid fibril formation by pentapeptide and tetrapeptide fragments of human calcitonin. J Biol Chem 277: 35475–35480. doi: 10.1074/jbc.M206039200
![]() |
[13] |
Wang SS, Good TA, Rymer DL (2005) The influence of phospholipid membranes on bovine calcitonin peptide's secondary structure and induced neurotoxic effects. Int J Biochem Cell Biol 37: 1656–1669. doi: 10.1016/j.biocel.2005.02.006
![]() |
[14] | Ji S, Wu Y, Sui S (2002) Cholesterol is an important factor affecting the membrane insertion of beta-amyloid peptide (A beta 1–40), which may potentially inhibit the fibril formation. J Biol Chem 277: 6273–6279. |
[15] | Micelli S, Meleleo D, Picciarelli V, et al. (2004) Effect of nanomolar concentrations of sodium dodecyl sulfate, a catalytic inductor of alpha-helices, on human calcitonin incorporation and channel formation in planar lipid membranes. Biophys J 87: 1065–1075. |
[16] |
Micelli S, Meleleo D, Picciarelli V, et al. (2006) Effect of pH-variation on insertion and ion channel formation of human calcitonin into planar lipid bilayers. Front Biosci 11: 2035–2044. doi: 10.2741/1945
![]() |
[17] |
Meleleo D, Micelli S, Toma K, et al. (2006) Effect of eel calcitonin glycosylation on incorporation and channel formation in planar phospholipid membranes. Peptides 27: 805–811. doi: 10.1016/j.peptides.2005.09.011
![]() |
[18] | Meleleo D, Picciarelli V (2016) Effect of calcium ions on human calcitonin. Possible implications for bone resorption by osteoclasts. Biometals 29: 61–79. |
[19] | Diociaiuti M, Polzi LZ, Valvo L, et al. (2006) Calcitonin forms oligomeric pore-like structures in lipid membranes. Biophys J 91: 2275–2281. |
[20] | Micelli S, Meleleo D, Picciarelli V, et al. (2004) Effect of sterols on beta-amyloid peptide (AbetaP 1–40) channel formation and their properties in planar lipid membranes. Biophys J 86: 2231–2237. |
[21] |
Micelli S, Gallucci E, Meleleo D, et al. (2002) Mitochondrial porin incorporation into black lipid membranes: ionic and gating contribution to the total current. Bioelectrochemistry 57: 97–106. doi: 10.1016/S1567-5394(02)00003-8
![]() |
[22] |
Hodge T, Colombini M (1997) Regulation of metabolite flux through voltage-gating of VDAC channels. J Membr Biol 157: 271–279. doi: 10.1007/s002329900235
![]() |
[23] |
Bogdanov M, Dowhan W (1998) Phospholipid-assisted protein folding: phosphatidylethanolamine is required at a late step of the conformational maturation of the polytopic membrane protein lactose permease. EMBO J 17: 5255–5264. doi: 10.1093/emboj/17.18.5255
![]() |
[24] |
Bogdanov M, Dowhan W (1999) Lipid-assisted protein folding. J Biol Chem 274: 36827–36830. doi: 10.1074/jbc.274.52.36827
![]() |
[25] | Bogdanov M, Umeda M, Dowhan W (1999) Phospholipid-assisted refolding of an integral membrane protein. Minimum structural features for phosphatidylethanolamine to act as a molecular chaperone. J Biol Chem 274: 12339–12345. |
[26] |
Zhang W, Bogdanov M, Pi J, et al. (2003) Reversible topological organization within a polytopic membrane protein is governed by a change in membrane phospholipid composition. J Biol Chem 278: 50128–50135. doi: 10.1074/jbc.M309840200
![]() |
[27] | Zhang W, Campbell HA, King SC, et al. (2005) Phospholipids as determinants of membrane protein topology. Phosphatidylethanolamine is required for the proper topological organization of the gamma-aminobutyric acid permease (GabP) of Escherichia coli. J Biol Chem 280: 26032–26038. |
[28] |
Chaparro Sosa AF, Kienle DF, Falatach RM, et al. (2018) Stabilization of Immobilized Enzymes via the Chaperone-Like Activity of Mixed Lipid Bilayers. ACS Appl Mater Interfaces 10: 19504–19513. doi: 10.1021/acsami.8b05523
![]() |
[29] |
Genheden S, Essex JW, Lee AG (2017) G protein coupled receptor interactions with cholesterol deep in the membrane. Biochim Biophys Acta Biomembr 1859: 268–281. doi: 10.1016/j.bbamem.2016.12.001
![]() |
[30] |
Guixà-González R, Albasanz JL, Rodriguez-Espigares I, et al. (2017) Membrane cholesterol access into a G-protein-coupled receptor. Nat Commun 8: 14505. doi: 10.1038/ncomms14505
![]() |
[31] |
O'Connor JW, Klauda JB (2011) Lipid membranes with a majority of cholesterol: applications to the ocular lens and aquaporin 0. J Phys Chem B 115: 6455–6464. doi: 10.1021/jp108650u
![]() |
[32] | Bradshaw JP (1997) Phosphatydylglycerol promotes bilayer insertion of salmon calcitonin. Biophys J 72: 2180–2186. |
[33] |
Stipani V, Gallucci E, Micelli S, et al. (2001) Channel formation by salmon and human calcitonin in black lipid membranes. Biophys J 81: 3332–3338. doi: 10.1016/S0006-3495(01)75966-8
![]() |
[34] |
Westerhoff HV, Hendler RW, Zasloff M, et al. (1989) Interactions between a new class of eukaryotic antimicrobial agents and isolated rat liver mitochondria. Biochim Biophys Acta 975: 361–369. doi: 10.1016/S0005-2728(89)80344-5
![]() |
[35] | Westerhoff HV, Juretić D, Hendler RW, et al. (1989) Magainins and the disruption of membrane-linked free-energy transduction. Proc Natl Acad Sci USA 86: 6597–6601. |
[36] |
Matsuzaki K, Mitani Y, Akada K, et al. (1998) Mechanism of synergism between antimicrobial peptides magainin 2 and PGLa. Biochemistry 37: 15144–15153. doi: 10.1021/bi9811617
![]() |
[37] | Cruciani RA, Barker JL, Zasloff M, et al. (1991) Antibiotic magainins exert cytolytic activity against transformed cell lines through channel formation. Proc Natl Acad Sci USA 88: 3792–3796. |
[38] | Gallucci E, Meleleo D, Micelli S, et al. (2003) Magainin 2 channel formation in planar lipid membranes: the role of lipid polar groups and ergosterol. Eur Biophys J 32: 22–32. |
[39] |
Ashley R, Harroun T, Hauss T, et al. (2006) Autoinsertion of soluble oligomers of Alzheimer's Abeta(1–42) peptide into cholesterol-containing membranes is accompanied by relocation of the sterol towards the bilayer surface. BMC Struct Biol 6: 21. doi: 10.1186/1472-6807-6-21
![]() |
[40] |
Qiu L, Buie C, Reay A, et al. (2011) Molecular dynamics simulations reveal the protective role of cholesterol in β-amyloid protein-induced membrane disruptions in neuronal membrane mimics. J Phys Chem B 115: 9795–9812. doi: 10.1021/jp2012842
![]() |
[41] |
Smart OS, Breed J, Smith GR, et al. (1997) A novel method for structure-based prediction of ion channel conductance properties. Biophys J 72: 1109–1126. doi: 10.1016/S0006-3495(97)78760-5
![]() |
[42] |
Hiller S, Garces RG, Malia TJ, et al. (2008) Solution structure of the integral human membrane protein VDAC-1 in detergent micelles. Science 321: 1206–1210. doi: 10.1126/science.1161302
![]() |
[43] |
Gallucci E, Micelli S, Monticelli G (1996) Pore formation in lipid bilayer membranes made of phosphatidylinositol and oxidized cholesterol followed by means of alternating current. Biophys J 71: 824–831. doi: 10.1016/S0006-3495(96)79283-4
![]() |
[44] |
Micelli S, Gallucci E, Picciarelli V (2000) Studies of mitochondrial porin incorporation parameters and voltage-gated mechanism with different black lipid membranes. Bioelectrochemistry 52: 63–75. doi: 10.1016/S0302-4598(00)00085-4
![]() |