Citation: Egidio Viola, Francesco Zimbardi, Vito Valerio, Antonio Villone. Effect of Ripeness and Drying Process on Sugar and Ethanol Production from Giant Reed (Arundo donax L.)[J]. AIMS Bioengineering, 2015, 2(2): 29-39. doi: 10.3934/bioeng.2015.2.29
[1] | Scott EL, Maarten A, Kootstra J, et al. (2010) Sustainable Biotechnology, ed. Singh and Harvey. Perspectives Bioenergy Biofuels 179-194. |
[2] | Gnansounou E (2010) Production and use of lignocellulosic bioethanol in Europe: Current situation and perspectives. Biores Technol 101: 4842-4850. doi: 10.1016/j.biortech.2010.02.002 |
[3] | Cardona CA, Quintero JA, Paz IC (2010) Production of bioethanol from sugarcane bagasse: Status and perspectives. Biores Technol 101: 4754-4766. doi: 10.1016/j.biortech.2009.10.097 |
[4] | Banerjee1 S, Mudliar S, Sen R, et al. (2010) Commercializing lignocellulosic bioethanol: technology bottlenecks and possible remedies. Biofuels Bioprod Biorefin 4:77-93. doi: 10.1002/bbb.188 |
[5] | Lewis M, Jackson M. (2002) In: JanicK J, Whipkey A, (Eds.), Trends in New Cropsand New Uses. ASHS Press, Alexandria, VA,. 371-376. |
[6] | Shatalov AA, Pereira H (2012) Xylose production from giant reed (Arundo donax L.): Modeling and optimization of dilute acid hydrolysis. Carbohydr Polym 87: 210-217. |
[7] | Nassi o Di Nasso N, Angelini LG, Bonari E (2010) Influence of fertilization and harvest time on fuel quality of reed (Reed donax L.) in central Italy. Eur J Agron 32: 219-227. |
[8] | Corno L, Pilu R, Adani F (2014) Arundo donax L.: a nonfood crop for bioenergy and biocompound production. Biotechnol Adv 32: 1532-1549. |
[9] | Fairley P (2011) Next generation biofuels. Nature 474: 2-5. |
[10] | Barnoud F, Joseleau JP (1975) Changes of the cell wall carbohydrates in the internode of Reed donax (graminae) at different stages of growth. Plant Sci Lett 4: 168-174. |
[11] | Monti A, Di Virgilio N, Venturi G (2008) Mineral composition and ash content of six major energy crops. Biomass Bioenergy 32: 216-223. doi: 10.1016/j.biombioe.2007.09.012 |
[12] | Mansfield SD, Mooney CJ, Saddler N (1999) Substrate and Enzyme Characteristics that Limit Cellulose Hydrolysis. Biotechnol Prog 15: 804-816. doi: 10.1021/bp9900864 |
[13] | Duan X, Zhang C, Ju X, et al. (2013) Effect of lignocellulosic composition and structure on the bioethanol production from different poplar lines. Bioresource technol 140: 363-367. doi: 10.1016/j.biortech.2013.04.101 |
[14] | Shatalov AA, Pereira H (2013) High-grade sulfur-free cellulose fibers by pre-hydrolysis and ethanol-alkali delignification of giant reed (Arundo donax L.) stems. Ind Crop Prod 43:623-630. doi: 10.1016/j.indcrop.2012.08.003 |
[15] | Scordia D, Cosentino SL, Lee JW, et al. (2012) Bioconversion of giant reed (Arundo donax L.) hemicellulose hydrolysate to ethanol by Scheffersomyces stipitis CBS6054. Biomass Bioenergy 39: 296-305. |
[16] | Raspolli Galletti AM, Antonetti C, Ribechini E, et al. (2013) From giant reed to levulinic acid and gamma-valerolactone: A high yield catalytic route to valeric biofuels. Appl Energ 102: 157-162. doi: 10.1016/j.apenergy.2012.05.061 |
[17] | Kohnke T, Lund K, Brelid H, et al. (2010) Kraft pulp hornification: A closer look at the preventive effect gained by glucuroxylan adsorption. Carbohydr Polym 81: 226-233. doi: 10.1016/j.carbpol.2010.02.023 |
[18] | Luo X, Zhu JY (2011) Effects of dryin-induced fiber hornification on enzymatic saccharification of lignocellulose. Enzyme Microb Technol 48: 92-99. doi: 10.1016/j.enzmictec.2010.09.014 |
[19] | Jeoh T, Ishizawa CI, Davis MF, et al. (2007) Cellulase digestibility of pretreated biomass is limited by cellulose accessibility. Biotechnol Bioeng 98: 112-122. doi: 10.1002/bit.21408 |
[20] | Agblevor FA, Rejai B, Wang D, et al. (1994) Influence of storage conditions on the production of hydrocarbons from herbaceous biomass. Biomass Bioenergy 6: 213-22. |
[21] | Wyman CE ((1999) Biomass Ethanol: Technical Progress, Opportunities, and Commercial Challenges, Annu Rev Energy Env 24: 189-226. |
[22] | Abatzoglou N, Chornet E, Belkacemi K (1992) Phenomenological kinetics of complex systems: the development of a generalized severity parameter and its application to lignocellulosics fractionation. Chem Eng Sci 47: 1109-1122. doi: 10.1016/0009-2509(92)80235-5 |
[23] | De Bari I, Viola E, Zimbardi F, et al. (2002) Ethanol Production at Flask and Pilot Scale from Concentrated Slurries of Steam-Exploded Aspen. Ind Eng Chem Res 41: 1745-1753. doi: 10.1021/ie010571f |
[24] | Sassner P, Galbe M, Zacchi G (2006) Bioethanol production based on simultaneous saccharification and fermentation of steam-pretreated Salix at high dry-matter content. Enzyme Microb Technol 39: 756-762. doi: 10.1016/j.enzmictec.2005.12.010 |
[25] | Stenberg K, Galbe M, Zacchi G (2000) The influence of lactic acid formation on the simultaneous saccharification and fermentation (SSF) of softwood to ethanol. Enzyme Microb Techn 26: 71-79. doi: 10.1016/S0141-0229(99)00127-1 |
[26] | Tomàs-Pejò E, Oliva JM, Ballesteros M, et al. (2008) Comparison of SHF and SSF Processes From Steam-Exploded Wheat Straw for Ethanol Production by Xylose-Fermenting and Robust Glucose-Fermenting Saccharomyces cerevisiae Strains. Biotechnol Bioeng 100: 1122-1131. doi: 10.1002/bit.21849 |
[27] | Kacic A, Palmquist B, Liden G (2014) Effects of agitation on particle size distribution and enzymatic hydrolysis of pretreated spruce and giant reed. Biotech for Biofuels 7: 77. doi: 10.1186/1754-6834-7-77 |
[28] | Shin SJ, Cho NS, Lai YZ (2007) Residual extractives in aspen kraft pulps and their impact on kappa number and Klason lignin determination. J Wood Sci 53: 494-497. doi: 10.1007/s10086-007-0894-8 |
[29] | Joseleau JP, Barnoud F (1975) Hemicellulose of Reed Donax at different stages of maturity. Phytochem 14: 71-75. doi: 10.1016/0031-9422(75)85010-2 |
[30] | Matsumoto Y, Ishizu A, Nakano J, et al. (1984). Residual Sugars in Klason Lignin. J Wood Chem Technol 4: 321-330. doi: 10.1080/02773818408070652 |