The coronavirus disease 2019 (COVID-19) pandemic has caused a tremendous impact on human society. It is important to predict or estimate the spreading speed of the virus, that is, the proportion of the population being infected in the first year of the pandemic, or the infection attack rate (IAR) in 2020. In this work, we reviewed estimates published in high-profile journals and concluded that the IAR was less than or close to 1/3 in most of the countries/regions. These estimates were built on various data and statistical and mathematical methods. Interestingly, this value was in line with an early prediction by He et al., posted online on 27 March 2020.
Citation: Mengyu Xie, Li Wen, Daihai He. Revisit the infection attack rate of COVID-19 in the first year of the pandemic[J]. Big Data and Information Analytics, 2025, 9: 350-371. doi: 10.3934/bdia.2025017
The coronavirus disease 2019 (COVID-19) pandemic has caused a tremendous impact on human society. It is important to predict or estimate the spreading speed of the virus, that is, the proportion of the population being infected in the first year of the pandemic, or the infection attack rate (IAR) in 2020. In this work, we reviewed estimates published in high-profile journals and concluded that the IAR was less than or close to 1/3 in most of the countries/regions. These estimates were built on various data and statistical and mathematical methods. Interestingly, this value was in line with an early prediction by He et al., posted online on 27 March 2020.
| [1] |
Shi Y, Wang G, Cai XP, Deng JW, Zheng L, Zhu HH, et al. (2020) An overview of COVID-19. J Zhejiang Univ Sci B 21: 343–360. https://doi.org/10.1631/jzus.B2000083 doi: 10.1631/jzus.B2000083
|
| [2] |
Middelburg RA, Rosendaal FR, (2020) COVID-19: How to make between-country comparisons. Int J Infect Dis 96: 477–481. https://doi.org/10.1016/j.ijid.2020.05.066 doi: 10.1016/j.ijid.2020.05.066
|
| [3] |
Saleh A, Qamar S, Tekin A, Singh R, Kashyap R, (2021) Vaccine development throughout history. Cureus 13: e16635. https://doi.org/10.7759/cureus.16635 doi: 10.7759/cureus.16635
|
| [4] |
Esakandari H, Nabi-Afjadi M, Fakkari-Afjadi J, Farahmandian N, Miresmaeili SM, Bahreini E, (2020) A comprehensive review of COVID-19 characteristics. Biol Proced Online 22: 1–10. https://doi.org/10.1186/s12575-020-00128-2 doi: 10.1186/s12575-020-00128-2
|
| [5] |
Yüce M, Filiztekin E, Özkaya KG, (2021) COVID-19 diagnosis—A review of current methods. Biosens Bioelectron 172: 112752. https://doi.org/10.1016/j.bios.2020.112752 doi: 10.1016/j.bios.2020.112752
|
| [6] |
Giri B, Pandey S, Shrestha R, Pokharel K, Ligler FS, Neupane BB, (2021) Review of analytical performance of COVID-19 detection methods. Anal Bioanal Chem 413: 35–48. https://doi.org/10.1007/s00216-020-03019-6 doi: 10.1007/s00216-020-03019-6
|
| [7] |
Rogan WJ, Gladen B, (1978) Estimating prevalence from the results of a screening test. Am J Epidemiol 107: 71–76. https://doi.org/10.1093/oxfordjournals.aje.a112450 doi: 10.1093/oxfordjournals.aje.a112450
|
| [8] |
Peng F, Tu L, Yang Y, Hu P, Wang R, Hu Q, et al. (2020) Management and treatment of COVID-19: The Chinese experience. Can J Cardiol 36: 915. https://doi.org/10.1016/j.cjca.2020.05.022 doi: 10.1016/j.cjca.2020.05.022
|
| [9] |
Barber RM, Sorensen RJ, Pigott DM, Bisignano C, Carter A, Amlag JO, et al. (2022) Estimating global, regional, and national daily and cumulative infections with SARS-CoV-2 through Nov 14, 2021: A statistical analysis. Lancet 399: 2351–2380. https://doi.org/10.1016/S0140-6736(22)01519-1 doi: 10.1016/S0140-6736(22)01519-1
|
| [10] | Liu C, Lee J, Ta C, Soroush A, Rogers JR, Kim JH, et al. (2021) A retrospective analysis of COVID-19 mRNA vaccine breakthrough infections-risk factors and vaccine effectiveness, preprint, medRxiv: 2021.10.05.21264583. https://doi.org/10.1101/2021.10.05.21264583 |
| [11] |
Reese H, Iuliano AD, Patel NN, Garg S, Kim L, Silk BJ, et al. (2021) Estimated incidence of coronavirus disease 2019 (COVID-19) illness and hospitalization—United States, February–September 2020. Clin Infect Dis 72: e1010–e1017. https://doi.org/10.1093/cid/ciaa1780 doi: 10.1093/cid/ciaa1780
|
| [12] |
Angulo FJ, Finelli L, Swerdlow DL, (2021) Estimation of US SARS-CoV-2 infections, symptomatic infections, hospitalizations, and deaths using seroprevalence surveys. JAMA Network Open 4: e2033706. https://doi.org/10.1001/jamanetworkopen.2020.33706 doi: 10.1001/jamanetworkopen.2020.33706
|
| [13] |
Jones JM, Stone M, Sulaeman H, Fink RV, Dave H, Levy ME, et al. (2021) Estimated US infection-and vaccine-induced SARS-CoV-2 seroprevalence based on blood donations, July 2020-May 2021. JAMA 326: 1400–1409. https://doi.org/10.1001/jama.2021.12814 doi: 10.1001/jama.2021.12814
|
| [14] |
Louca S, (2021) SARS-CoV-2 infections in 165 countries over time. Int J Infect Dis 111: 336–346. https://doi.org/10.1016/j.ijid.2021.05.012 doi: 10.1016/j.ijid.2021.05.012
|
| [15] |
Pei S, Yamana TK, Kandula S, Galanti M, Shaman J, (2021) Burden and characteristics of COVID-19 in the united states during 2020. Nature 598: 338–341. https://doi.org/10.1038/s41586-021-03578-8 doi: 10.1038/s41586-021-03578-8
|
| [16] |
Chitwood MH, Russi M, Gunasekera K, Havumaki J, Klaassen F, Pitzer VE, et al (2022) Reconstructing the course of the COVID-19 epidemic over 2020 for US states and counties: Results of a Bayesian evidence synthesis model. PLoS Comput Biol 18: e1010465. https://doi.org/10.1371/journal.pcbi.1010465 doi: 10.1371/journal.pcbi.1010465
|
| [17] |
Sullivan PS, Siegler AJ, Shioda K, Hall EW, Bradley H, Sanchez T, et al. (2022) Severe acute respiratory syndrome coronavirus 2 cumulative incidence, United States, August 2020–December 2020. Clin Infect Dis 74: 1141–1150. https://doi.org/10.1093/cid/ciab610 doi: 10.1093/cid/ciab610
|
| [18] |
García-Carreras B, Hitchings MD, Johansson MA, Biggerstaff M, Slayton RB, Healy JM, et al. (2023) Accounting for assay performance when estimating the temporal dynamics in SARS-CoV-2 seroprevalence in the US. Nat Commun 14: 2235. https://doi.org/10.1038/s41467-023-37950-3 doi: 10.1038/s41467-023-37950-3
|
| [19] |
Wiegand RE, Deng Y, Deng X, Lee A, Meyer WA, Letovsky S, et al. (2023) Estimated SARS-CoV-2 antibody seroprevalence trends and relationship to reported case prevalence from a repeated, cross-sectional study in the 50 states and the District of Columbia, United States—October 25, 2020–February 26, 2022. Lancet Regional Health Am 18: 100578. https://doi.org/10.1016/j.lana.2023.100578 doi: 10.1016/j.lana.2023.100578
|
| [20] |
Hozé N, Paireau J, Lapidus N, Kiem CT, Salje H, Severi G, et al. (2021) Monitoring the proportion of the population infected by SARS-CoV-2 using age-stratified hospitalisation and serological data: A modelling study. Lancet Public Health 6: e408–e415. https://doi.org/10.1016/S2468-2667(21)00111-5 doi: 10.1016/S2468-2667(21)00111-5
|
| [21] |
Glemain B, de Lamballerie X, Zins M, Severi G, Touvier M, Deleuze JF, et al. (2024) Estimating SARS-CoV-2 infection probabilities with serological data and a Bayesian mixture model. Sci Rep 14: 9503. https://doi.org/10.1038/s41598-024-59991-4 doi: 10.1038/s41598-024-59991-4
|
| [22] |
McKenzie L, Shoukat A, Wong KO, Itahashi K, Yasuda E, Demarsh A, et al. (2022) Inferring the true number of SARS-CoV-2 infections in Japan. J Infect Chemother 28: 1519–1522. https://doi.org/10.1016/j.jiac.2022.07.010 doi: 10.1016/j.jiac.2022.07.010
|
| [23] |
Yamayoshi S, Iwatsuki-Horimoto K, Okuda M, Ujie M, Yasuhara A, Murakami J, et al. (2022) Age-stratified seroprevalence of SARS-CoV-2 antibodies before and during the vaccination era, Japan, February 2020–March 2022. Emerging Infect Dis 28: 2198. https://doi.org/10.3201/eid2811.220424 doi: 10.3201/eid2811.220424
|
| [24] |
Arashiro T, Arai S, Kinoshita R, Otani K, Miyamoto S, Yoneoka D, et al. (2023) National seroepidemiological study of COVID-19 after the initial rollout of vaccines: Before and at the peak of the Omicron-dominant period in Japan. Influenza Other Respir Viruses 17: e13094. https://doi.org/10.1111/irv.13094 doi: 10.1111/irv.13094
|
| [25] |
Neuhauser H, Rosario AS, Butschalowsky H, Haller S, Hoebel J, Michel J, et al. (2022) Nationally representative results on SARS-CoV-2 seroprevalence and testing in Germany at the end of 2020. Sci Rep 12: 19492. https://doi.org/10.1038/s41598-022-22621-1 doi: 10.1038/s41598-022-22621-1
|
| [26] |
Offergeld R, Preussel K, Zeiler T, Aurich K, Baumann-Baretti BI, Ciesek S, et al. (2023) Monitoring the SARS-CoV-2 pandemic: Prevalence of antibodies in a large, repetitive cross-sectional study of blood donors in Germany—results from the sebluco study 2020–2022. Pathogens 12: 551. https://doi.org/10.3390/pathogens12040551 doi: 10.3390/pathogens12040551
|
| [27] |
Espenhain L, Tribler S, Sværke Jørgensen C, Holm Hansen C, Wolff Sönksen U, Ethelberg S, (2021) Prevalence of SARS-CoV-2 antibodies in Denmark: Nationwide, population-based seroepidemiological study. Eur J Epidemiol 36: 715–725. https://doi.org/10.1007/s10654-021-00758-5 doi: 10.1007/s10654-021-00758-5
|
| [28] |
Krogsgaard LW, Espenhain L, Tribler S, Sværke Jørgensen C, Hansen CH, Møller FT, et al. (2023) Seroprevalence of SARS-CoV-2 antibodies in Denmark: Results of two nationwide population-based surveys, February and May 2021. Infect Drug Resist 16: 301–312. https://doi.org/10.2147/IDR.S395312 doi: 10.2147/IDR.S395312
|
| [29] |
Reedman CN, Drews SJ, Yi QL, Pambrun C, O'Brien SF, (2022) Changing patterns of SARS-CoV-2 seroprevalence among Canadian blood donors during the vaccine era. Microbiol Spectrum 10: e00339-22. https://doi.org/10.1128/spectrum.00339-22 doi: 10.1128/spectrum.00339-22
|
| [30] |
Tuite AR, Fisman D, Abe KT, Rathod B, Pasculescu A, Colwill K, et al. (2022) Estimating SARS-CoV-2 seroprevalence in Canadian blood donors, April 2020 to March 2021: Improving accuracy with multiple assays. Microbiol Spectrum 10: e02563-21. https://doi.org/10.1128/spectrum.02563-21 doi: 10.1128/spectrum.02563-21
|
| [31] |
Murphy TJ, Swail H, Jain J, Anderson M, Awadalla P, Behl L, et al. (2023) The evolution of SARS-CoV-2 seroprevalence in Canada: A time-series study, 2020–2023. CMAJ 195: E1030–E1037. https://doi.org/10.1503/cmaj.221559 doi: 10.1503/cmaj.221559
|
| [32] |
Pota M, Pota A, Sirico ML, Esposito M, (2020) SARS-CoV-2 infections and COVID-19 fatality: Estimation of infection fatality ratio and current prevalence. Int J Environ Res Public Health 17: 9290. https://doi.org/10.3390/ijerph17249290 doi: 10.3390/ijerph17249290
|
| [33] |
Lee K, Jo S, Lee J, (2021) Seroprevalence of SARS-CoV-2 antibodies in South Korea. J Korean Stat Soc 50: 891–904. https://doi.org/10.1007/s42952-021-00143-0 doi: 10.1007/s42952-021-00143-0
|
| [34] |
Tunheim G, Rø GØI, Tran T, Kran AMB, Andersen JT, Vaage EB, et al. (2022) Trends in seroprevalence of SARS-CoV-2 and infection fatality rate in the Norwegian population through the first year of the COVID-19 pandemic. Influenza Other Respir Viruses 16: 204–212. https://doi.org/10.1111/irv.13009 doi: 10.1111/irv.13009
|
| [35] |
Bassal R, Keinan-Boker L, Cohen D, Mendelson E, Lustig Y, Indenbaum V, (2022) Estimated infection and vaccine induced SARS-CoV-2 seroprevalence in Israel among adults, January 2020–July 2021. Vaccines 10: 1663. https://doi.org/10.3390/vaccines10101663 doi: 10.3390/vaccines10101663
|
| [36] |
Anda EE, Braaten T, Borch KB, Nøst TH, Chen SL, Lukic M, et al. (2022) Seroprevalence of antibodies against SARS-CoV-2 in the adult population during the pre-vaccination period, Norway, winter 2020/21. Eurosurveillance 27: 2100376. https://doi.org/10.2807/1560-7917.ES.2022.27.13.2100376 doi: 10.2807/1560-7917.ES.2022.27.13.2100376
|
| [37] |
Koureas M, Bogogiannidou Z, Vontas A, Kyritsi MA, Mouchtouri VA, Dadouli K, et al. (2022) SARS-CoV-2 sero-surveillance in Greece: Evolution over time and epidemiological attributes during the pre-vaccination pandemic era. Diagnostics 12: 295. https://doi.org/10.3390/diagnostics12020295 doi: 10.3390/diagnostics12020295
|
| [38] |
Vette KM, Machalek DA, Gidding HF, Nicholson S, O'Sullivan MV, Carlin JB, et al. (2022) Seroprevalence of severe acute respiratory syndrome coronavirus 2-specific antibodies in Australia after the first epidemic wave in 2020: A national survey. Open Forum Infect Dis 9: ofac002. https://doi.org/10.1093/ofid/ofac002 doi: 10.1093/ofid/ofac002
|
| [39] |
Solastie A, Nieminen T, Ekström N, Nohynek H, Lehtonen L, Palmú AA, et al. (2023) Changes in SARS-CoV-2 seroprevalence and population immunity in Finland, 2020–2022. Emerg Microbes Infect 12: 2222849. https://doi.org/10.1080/22221751.2023.2222849 doi: 10.1080/22221751.2023.2222849
|
| [40] |
Impouma B, Mboussou F, Shahpar C, Wolfe CM, Farham B, Williams GS, et al. (2021) Estimating the SARS-CoV2 infections detection rate and cumulative incidence in the world health organization African region 10 months into the pandemic. Epidemiol Infect 149: e264. https://doi.org/10.1017/S0950268821001988 doi: 10.1017/S0950268821001988
|
| [41] |
Popova AY, Smirnov VS, Andreeva EE, Babura EA, Balakhonov SV, Bashketova NS, et al. (2021) SARS-CoV-2 seroprevalence structure of the Russian population during the COVID-19 pandemic. Viruses 13: 1648. https://doi.org/10.3390/v13081648 doi: 10.3390/v13081648
|
| [42] |
Saeedzai SA, Sahak MN, Arifi F, Aly EA, van Gurp M, White LJ, et al. (2022) COVID-19 morbidity in Afghanistan: A nationwide, population-based seroepidemiological study. BMJ Open 12: e060739. https://doi.org/10.1136/bmjopen-2022-060739 doi: 10.1136/bmjopen-2022-060739
|
| [43] |
Figueiredo GM, Tengan FM, Campos SR, Luna EJ, (2023) Seroprevalence of SARS-CoV-2 in Brazil: A systematic review and meta-analysis. Clinics 78: 100233. https://doi.org/10.1016/j.clinics.2023.03.003 doi: 10.1016/j.clinics.2023.03.003
|
| [44] |
Guang Y, Lina L, Hui L, (2025) Seroprevalence of SARS-CoV-2 antibody before and after both vaccination and natural infection in China. Immunity Inflammation Dis 13: e70184. https://doi.org/10.1002/iid3.70184 doi: 10.1002/iid3.70184
|
| [45] |
Filchakova O, Dossym D, Ilyas A, Kuanysheva T, Abdizhamil A, Bukasov R, (2022) Review of COVID-19 testing and diagnostic methods. Talanta 244: 123409. https://doi.org/10.1016/j.talanta.2022.123409 doi: 10.1016/j.talanta.2022.123409
|
| [46] |
Meyer MJ, Yan S, Schlageter S, Kraemer JD, Rosenberg ES, Stoto MA, (2022) Adjusting COVID-19 seroprevalence survey results to account for test sensitivity and specificity. Am J Epidemiol 191: 681–688. https://doi.org/10.1093/aje/kwab222 doi: 10.1093/aje/kwab222
|
| [47] |
Lee B, Song H, Apio C, Han K, Park J, Liu Z, et al. (2023) An analysis of the waning effect of COVID-19 vaccinations. Genomics Inf 21: e50. https://doi.org/10.5808/GI.2023.21.4.e50 doi: 10.5808/GI.2023.21.4.e50
|
| [48] |
McCulloh I, Kiernan K, Kent T, (2020) Inferring true COVID19 infection rates from deaths. Front Big Data 3: 565589. https://doi.org/10.3389/fdata.2020.565589 doi: 10.3389/fdata.2020.565589
|
| [49] |
Beser J, Galanis I, Enkirch T, Kühlmann Berenzon S, van Straten E, Duracz J, et al. (2022) Seroprevalence of SARS-CoV-2 in Sweden, April 26 to May 9, 2021. Sci Rep 12: 10816. https://doi.org/10.1038/s41598-022-14871-9 doi: 10.1038/s41598-022-14871-9
|
| [50] |
Lee D, Choi B, (2020) Policies and innovations to battle COVID-19—A case study of South Korea. Health Policy Technol 9: 587–597. https://doi.org/10.1016/j.hlpt.2020.07.002 doi: 10.1016/j.hlpt.2020.07.002
|
| [51] |
Yan B, Zhang X, Wu L, Zhu H, Chen B, (2020) Why do countries respond differently to COVID-19? A comparative study of Sweden, China, France, and Japan. Am Rev Public Adm 50: 762–769. https://doi.org/10.1177/0275074020950521 doi: 10.1177/0275074020950521
|
| [52] |
Desson Z, Weller E, McMeekin P, Ammi M, (2020) An analysis of the policy responses to the COVID-19 pandemic in France, Belgium, and Canada. Health Policy Technol 9: 430–446. https://doi.org/10.1016/j.hlpt.2020.05.006 doi: 10.1016/j.hlpt.2020.05.006
|
| [53] |
He D, Gao D, Zhuang Z, Cao P, Lou Y, Yang L, (2020) The attack rate of the COVID-19 in a year. SSRN Electron J 2020. https://dx. doi.org/10.2139/ssrn.3562044 doi: 10.2139/ssrn.3562044
|
| [54] |
Chen S, Flegg JA, Lythgoe KA, White LJ, (2025) Reconstructing the first COVID-19 pandemic wave with minimal data in England. Epidemics 50: 100814. https://doi.org/10.1016/j.epidem.2024.100814 doi: 10.1016/j.epidem.2024.100814
|
| [55] |
Pagen DM, Brinkhues S, Dukers-Mujrers NH, den Heijer CD, Bouwmeester-Vincken N, Hanssen DA, et al. (2022) Exposure factors associated with SARS-CoV-2 seroprevalence during the first eight months of the COVID-19 pandemic in the Netherlands: A cross-sectional study. PLoS One 17: e0268057. https://doi.org/10.1371/journal.pone.0268057 doi: 10.1371/journal.pone.0268057
|
| [56] |
Piler P, Thon V, Andryšková L, Doležel K, Kostka D, Pavlík T, et al. (2022) Nationwide increases in anti-SARS-CoV-2 IgG antibodies between October 2020 and March 2021 in the unvaccinated Czech population. Commun Med 2: 19. https://doi.org/10.1038/s43856-022-00182-1 doi: 10.1038/s43856-022-00182-1
|
| [57] |
Vilibic-Cavlek T, Stevanovic V, Ilic M, Barbic L, Capak K, Tabain I, et al. (2021) SARS-CoV-2 seroprevalence and neutralizing antibody response after the first and second COVID-19 pandemic wave in Croatia. Pathogens 10: 774. https://doi.org/10.3390/pathogens10060774 doi: 10.3390/pathogens10060774
|
| [58] |
Ward H, Atchison C, Whitaker M, Ainslie KE, Elliott J, Okell L, et al. (2021) SARS-CoV-2 antibody prevalence in England following the first peak of the pandemic. Nat Commun 12: 905. https://doi.org/10.1038/s41467-021-21200-1 doi: 10.1038/s41467-021-21200-1
|