Banana tree cultivation requires high doses of fertilizers to reach the productive potential of improved cultivars. On the other hand, more than 70% of banana plantations are concentrated in family farming, which has low capital availability and technology. The present study aimed to evaluate the ability of Trichoderma asperellum to improve the efficiency of nutrient use and economic viability of the banana tree cultivation under nutritional management with native T. asperellum, in a family production system in the Amazon region. Three treatments were tested: 100% of fertilizers (control), 50% of fertilizers + T. asperellum (TA) and 100% of fertilizers + TA. Fertilization consisted of inorganic fertilizers and poultry litter. The first banana cycle production and the economic viability of the practices were evaluated. The inoculation of TA + 100% of fertilizers increased productivity by 23%. The banana productivity was similar for control treatments (100%) and 50% for fertilizers + TA, however, using 50% of fertilizers reduced the production costs by 7.2% in the year of implantation and, in 17, 6% from the 2nd year of planting. In six years, the inoculation with T. asperellum increased revenues by US$\$$ 8,944.40 with 100% of fertilizers, and by US$\$$ 1,936.35 with 50% of fertilizers. Our results show for the first time that using T. asperellum in the nutritional management of bananas improves the agronomic performance of the crop, being economically viable in a family production system in the Amazon. The use of biostimulants is a promising practice to increase the earnings for farmers and make banana production more sustainable in the region.
Citation: Thamires Monteiro Silva Maués, Rafael Rodrigo da Silva Costa, Marcos Antônio Souza dos Santos, Gisele Barata da Silva. Agroeconomic performance of banana tree under nutritional management with Trichoderma asperellum, in a family production system[J]. AIMS Agriculture and Food, 2022, 7(2): 297-311. doi: 10.3934/agrfood.2022019
Banana tree cultivation requires high doses of fertilizers to reach the productive potential of improved cultivars. On the other hand, more than 70% of banana plantations are concentrated in family farming, which has low capital availability and technology. The present study aimed to evaluate the ability of Trichoderma asperellum to improve the efficiency of nutrient use and economic viability of the banana tree cultivation under nutritional management with native T. asperellum, in a family production system in the Amazon region. Three treatments were tested: 100% of fertilizers (control), 50% of fertilizers + T. asperellum (TA) and 100% of fertilizers + TA. Fertilization consisted of inorganic fertilizers and poultry litter. The first banana cycle production and the economic viability of the practices were evaluated. The inoculation of TA + 100% of fertilizers increased productivity by 23%. The banana productivity was similar for control treatments (100%) and 50% for fertilizers + TA, however, using 50% of fertilizers reduced the production costs by 7.2% in the year of implantation and, in 17, 6% from the 2nd year of planting. In six years, the inoculation with T. asperellum increased revenues by US$\$$ 8,944.40 with 100% of fertilizers, and by US$\$$ 1,936.35 with 50% of fertilizers. Our results show for the first time that using T. asperellum in the nutritional management of bananas improves the agronomic performance of the crop, being economically viable in a family production system in the Amazon. The use of biostimulants is a promising practice to increase the earnings for farmers and make banana production more sustainable in the region.
[1] | Food and Agriculture Organization (2019) Food Outlook: Biannual Report on Global Food Markets—November 2019. Available from: http://www.fao.org/3/ca6911en/CA6911EN.pdf. |
[2] | Food and Agriculture Organization (2018) FAO Statistical Databases—FAOSTAT. Available from: http://www.fao.org/faostat/en/#data. |
[3] | Instituto Brasileiro de Geografia e Estatística (2017) Censo agropecuário 2017. Available from: https://sidra.ibge.gov.br/tabela/6955. |
[4] | Borges AL, Silva JTA, Oliveira AMG, et al. (2015) Nutrição e adubação. In: Ferreira CF, Silva SDO, Amorim EP (Eds.), et al., O agronegócio da banana, Brasília: Embrapa, 331–398. |
[5] | Rodrigues C, Ribeiro F, Missias H, et al. (2018) Rentabilidade econômico-financeira para implantação da banana prata anã. Agrarian Academy 5: 170–180. https://doi.org/10.18677/Agrarian_Academy_2018B16 doi: 10.18677/Agrarian_Academy_2018B16 |
[6] | Campos MP, Pio LAS, Rufini JCM, et al. (2022) Economic analysis of fertilization management in 'Prata-Anã' Gorutuba banana plants. Rev Bras Frutic 44: 1–9. https://doi.org/10.1590/0100-29452022851 doi: 10.1590/0100-29452022851 |
[7] | Neill C, Jankowski KJ, Brando PM, et al. (2017) Surprisingly modest water quality impacts from expansion and intensification of large-scale commercial agriculture in the Brazilian Amazon-Cerrado Region. Trop Conserv Sci 10: 1–5. https://doi:10.1177/1940082917720669 doi: 10.1177/1940082917720669 |
[8] | Solgi E, Sheikhzadeh H, Solgi M (2018) Role of irrigation water, inorganic and organic fertilizers in soil and crop contamination by potentially hazardous elements in intensive farming systems: Case study from Moghan agro-industry. Iran J Geochem Explor 185: 74–80. https://doi.org/10.1016/j.gexplo.2017.11.008 doi: 10.1016/j.gexplo.2017.11.008 |
[9] | Arikan OA, Mulbry W, Rice C (2016) The effect of composting on the persistence of four ionophores in dairy manure and poultry litter. Waste Manage 54: 110–117. https://doi.org/10.1016/j.wasman.2016.04.032 doi: 10.1016/j.wasman.2016.04.032 |
[10] | Chen Z, Kim J, Jiang X (2018) Survival of Escherichia coli O157: H7 and Salmonella enterica in animal waste-based composts as influenced by compost type, storage condition and inoculum level. J Appl Microbiol 124: 1311–1323. https://doi.org/10.1111/jam.13719 |
[11] | Gilbert N (2009) Environment: The disappearing nutrient. Nature 461: 716–718. https://doi.org/10.1038/461716a doi: 10.1038/461716a |
[12] | Du Jardin P (2015) Plant biostimulants: definition, concept, main categories and regulation. Sci Hortic 196: 3–14. https://doi.org/10.1016/j.scienta.2015.09.021 doi: 10.1016/j.scienta.2015.09.021 |
[13] | López-Bucio J, Pelagio-Flores R, Herrera-Estrella A (2015) Trichoderma as biostimulant: exploiting the multilevel properties of a plant beneficial fungus. Sci Hortic 196: 109–123. https://doi.org/10.1016/j.scienta.2015.08.043 doi: 10.1016/j.scienta.2015.08.043 |
[14] | Kuppusamy P, Bagul SY, Das S, et al. (2019) Microbe-mediated abiotic stress alleviation: molecular and biochemical basis. In: Varma A, Tripathi S, Prasad R (Eds.), Plant Biotic Interactions, Springer, Cham, 263–281. https://doi.org/10.1007/978-3-030-26657-8_16 |
[15] | Chakraborty, Tanushree, Nasim A (2021) Biofertilizers: Characteristic Features and Applications. In: Inamuddin, Ahamed MI, Boddula R (Eds.), et al., Biofertilizers: Study and Impact, Scrivener Publishing, Wiley, 429–489. https://doi.org/10.1002/9781119724995.ch15 |
[16] | Qin L, Guo C, Huang S, et al. (2017) Growth-promoting effects of Trichoderma asperellum strain PZ6 on banana and its indoor control effect against banana fusarium wilt. J South Agric 48: 277–283. |
[17] | López-Valenzuela BE, Armenta-Bojórquez AD, Hernandez-Verdugo S, et al. (2019) Trichoderma spp. and Bacillus spp. as growth promoters in maize (Zea mays L.). Phyton 88: 37–46. https://doi.org/10.32604/phyton.2019.04621 doi: 10.32604/phyton.2019.04621 |
[18] | Haque MM, Ilias G, Molla A (2012) Impact of Trichoderma-enriched biofertilizer on the growth and yield of mustard (Brassica rapa L.) and tomato (Solanum lycopersicon Mill.). The Agriculturists 10: 109–119. https://doi.org/10.3329/agric.v10i2.13148 doi: 10.3329/agric.v10i2.13148 |
[19] | Bononi L, Chiaramonte JB, Pansa CC, et al. (2020) Phosphorus-solubilizing Trichoderma spp. from Amazon soils improve soybean plant growth. Sci Rep 10: 2858. https://doi.org/10.1038/s41598-020-59793-8 doi: 10.1038/s41598-020-59793-8 |
[20] | Martins E (2009) Contabilidade de custos, 2 Eds., São Paulo: Atlas. |
[21] | Lacerda MD, Tarsitano RA, Hernandez FBT, et al. (2013) Análise econômica da produção de banana-maçã na região Sudeste do Estado do Pará. Inf Econ 43: 40–44. |
[22] | Barbosa FEL, Lacerda CF, Amorim AV, et al. (2016) Produtividade e viabilidade econômica da bananeira associada com plantas de cobertura. Rev Bras Eng Agrí Ambient 20: 1078–1082. https://doi.org/10.1590/1807-1929/agriambi.v20n12p1078-1082 doi: 10.1590/1807-1929/agriambi.v20n12p1078-1082 |
[23] | Cravo M, Viegas I, Brasil E (2010) Recomendações de adubação e calagem para o Estado do Pará, Belém: Embrapa Amazônia Oriental. |
[24] | Ferrari A, Batista TFV, Montenegro H, et al. (2013) Diversidade de Trichoderma spp. coletados em solo na base petrolífera "Pedro de Moura" em Coari-AM. In: Oliveira HN, Ávila CJ, Pereira FF (Eds.), Anais do 13º Siconbiol, Simpósio de Controle Biológico, 2013 Sep 15–18; Bonito, Mato Grosso do Sul. Brasília, DF: Embrapa. |
[25] | de Sousa TP, Chaibub AA, Cortes MVB. et al. (2021) Molecular identification of Trichoderma spp. isolates and biochemical characterization of antagonistic interaction against rice blast. Arch Microbiol 203: 3257–3268. https://doi.org/10.1007/s00203-021-02307-5 doi: 10.1007/s00203-021-02307-5 |
[26] | Matsunaga M, Bemelmans PF, Toledo PEN, et al. (1976) Metodologia de custo de produção utilizada pelo IEA. Agricultura em São Paulo 23: 123–139. |
[27] | Leite JBV, Silva SO, Alves EJ, et al. (2003) Caracteres da planta e do cacho de genótipos de bananeira, em quatro ciclos de produção, em Belmonte, Bahia. Rev Bras Frutic 25: 443–447. https://doi.org/10.1590/S0100-29452003000300021 doi: 10.1590/S0100-29452003000300021 |
[28] | Martin NB, Serra R, Oliveira MDM, et al. (1998) Sistema integrado de custos agropecuários-CUSTAGRI. Inf Econ 28: 1–22. |
[29] | Samanez CP (2009) Engenharia econômica, São Paulo: Pearson Prentice Hall. |
[30] | Bordeaux-Rego R (2007) Viabilidade econômico-financeira de projetos. Rio de Janeiro: Editora FGV. |
[31] | Nascimento WMO, Müller CH, Carvalho JEU, et al. (2009) Avaliação de cultivares de bananeira em resistência à sigatoka-negra em Belém, PA. Belém: Embrapa Amazônia Oriental. Comunicado Técnico n° 218: ISSN 1983-0505. |
[32] | França SKS, Cardoso AF, Lustrosa DC, et al. (2015) Biocontrol of sheath blight by Trichoderma asperellum in tropical lowland rice. Agron Sustain Dev 35: 317–324. https://doi.org/10.1007/s13593-014-0244-3 doi: 10.1007/s13593-014-0244-3 |
[33] | Chagas LFB, Chagas Junior AF, Martins ALL, et al. (2021) Biomass efficiency and productivity of soybean inoculated with Trichoderma. Braz J Dev 7: 109950–109964. https://doi.org/10.34117/bjdv7n11-563 doi: 10.34117/bjdv7n11-563 |
[34] | Mia MAB, Shamsuddin ZH, Wahab Z, et al. (2005) High-yielding and quality banana production through plant growth-promoting rhizobacterial inoculation. Fruits 61: 313–319. https://doi.org/10.1051/fruits:2005024 doi: 10.1051/fruits:2005024 |
[35] | Hazarika TK, Nautiyal BP, Bhattacharyya RK (2015) Conjunctive use of bio-fertilizers and organics for improving growth, yield and quality of banana cv. Grand Naine. Indian J Hortic 72: 461–465. https://doi.org/10.5958/0974-0112.2016.00003.7 doi: 10.5958/0974-0112.2016.00003.7 |
[36] | Moreira FM, Cairo PAR, Borges AL, et al. (2021) Investigating the ideal mixture of soil and organic compound with Bacillus spp. and Trichoderma asperellum inoculations for optimal growth and nutrient content of banana seedlings. S Afr J Bot 137: 249–256. https://doi.org/10.1016/j.sajb.2020.10.021 doi: 10.1016/j.sajb.2020.10.021 |
[37] | Handayani T, Dewi TK, Martanti D, et al. (2021) Application of inorganic and liquid organic bio-fertilizers affects the vegetative growth and rhizobacteria populations of eight banana cultivars. Biodiversitas J Biol Diversity 22: 1261–1271. https://doi.org/10.13057/biodiv/d220323Y doi: 10.13057/biodiv/d220323Y |