Research article

Impact of macroeconomic indicators on bankruptcy prediction models: Case of the Portuguese construction sector

  • Received: 05 April 2022 Revised: 22 June 2022 Accepted: 29 June 2022 Published: 11 July 2022
  • JEL Codes: C51, C52, C81, C82, G33

  • The importance of macroeconomic indicators on the performance of bankruptcy prediction models has been a contentious issue, due in part to a lack of empirical evidence. Most indicators are primarily centered around a company's internal environment, overlooking the impact of the economic cycle on the status of the company. This research brings awareness about the combination of microeconomic and macroeconomic factors. To do this, a new model based on logistic regression was combined with principal component analysis to determine the indicators that best explained the variations in the dataset studied. The sample used comprised data from 1,832 Portuguese construction companies from 2009 to 2019. The empirical results demonstrated an average accuracy rate of 90% up until three years before the bankruptcy. The microeconomic indicators with statistical significance fell within the category of liquidity ratios, solvency and financial autonomy ratios. Regarding the macroeconomic indicators, the gross domestic product and birth rate of enterprises proved to increase the accuracy of bankruptcy prediction more than using only microeconomic factors. A practical implication of the results obtained is that construction companies, as well as investors, government agencies and banks, can use the suggested model as a decision-support system. Furthermore, consistent use can lead to an effective method of preventing bankruptcy by spotting early warning indicators.

    Citation: Ana Sousa, Ana Braga, Jorge Cunha. Impact of macroeconomic indicators on bankruptcy prediction models: Case of the Portuguese construction sector[J]. Quantitative Finance and Economics, 2022, 6(3): 405-432. doi: 10.3934/QFE.2022018

    Related Papers:

  • The importance of macroeconomic indicators on the performance of bankruptcy prediction models has been a contentious issue, due in part to a lack of empirical evidence. Most indicators are primarily centered around a company's internal environment, overlooking the impact of the economic cycle on the status of the company. This research brings awareness about the combination of microeconomic and macroeconomic factors. To do this, a new model based on logistic regression was combined with principal component analysis to determine the indicators that best explained the variations in the dataset studied. The sample used comprised data from 1,832 Portuguese construction companies from 2009 to 2019. The empirical results demonstrated an average accuracy rate of 90% up until three years before the bankruptcy. The microeconomic indicators with statistical significance fell within the category of liquidity ratios, solvency and financial autonomy ratios. Regarding the macroeconomic indicators, the gross domestic product and birth rate of enterprises proved to increase the accuracy of bankruptcy prediction more than using only microeconomic factors. A practical implication of the results obtained is that construction companies, as well as investors, government agencies and banks, can use the suggested model as a decision-support system. Furthermore, consistent use can lead to an effective method of preventing bankruptcy by spotting early warning indicators.



    加载中


    [1] Abdallah FDM (2018) Statistical Modelling of Categorical Outcome with More than Two Nominal Categories. Am J Appl Math Stat 6: 262–265. https://doi.org/10.12691/ajams-6-6-7 doi: 10.12691/ajams-6-6-7
    [2] Acosta-González E, Fernández-Rodríguez F (2014) Forecasting Financial Failure of Firms via Genetic Algorithms. Comput Econ 43: 133–157. https://doi.org/10.1007/s10614-013-9392-9 doi: 10.1007/s10614-013-9392-9
    [3] Acosta-González E, Fernández-Rodríguez F, Ganga H (2019) Predicting Corporate Financial Failure Using Macroeconomic Variables and Accounting Data. Comput Econ 53: 227–257. https://doi.org/10.1007/s10614-017-9737-x doi: 10.1007/s10614-017-9737-x
    [4] Altman EI (1968) Financial ratios, discriminant analysis and the prediction of corporate bankruptcy. J Financ 23: 589–609. https://doi.org/10.1111/j.1540-6261.1968.tb00843.x doi: 10.1111/j.1540-6261.1968.tb00843.x
    [5] Altman EI (1983) Why businesses fail. J Bus Strat 3: 15–21. https://doi.org/10.1108/eb038985 doi: 10.1108/eb038985
    [6] Altman EI, Hotchkiss E (2006) Corporate Financial Distress and Bankruptcy (3rd ed.), John Wiley & Sons, Inc.
    [7] Asuero AG, Sayago A, González AG (2006) The correlation coefficient: An overview. Crit Rev Anal Chem 36: 41–59. https://doi.org/10.1080/10408340500526766 doi: 10.1080/10408340500526766
    [8] Barboza F, Kimura H, Altman E (2017) Machine learning models and bankruptcy prediction. Expert Syst Appl 83: 405–417. https://doi.org/10.1016/j.eswa.2017.04.006 doi: 10.1016/j.eswa.2017.04.006
    [9] Beaver WH (1966) Financial Ratios As Predictors of Failure. J Account Res 4: 71–111. https://doi.org/10.2307/2490171 doi: 10.2307/2490171
    [10] Beaver W, McNichols M, Rhie JW (2005) Have financial statements become less informative? Evidence from the ability of financial ratios to predict bankruptcy. Rev Account Stud 10: 93–122. https://doi.org/10.1007/s11142-004-6341-9 doi: 10.1007/s11142-004-6341-9
    [11] Bellovary J, Giacomino D, Akers MD (2007) A Review of Bankruptcy Prediction Studies: 1930–Present. J Financ Educ 33: 1–42. https://www.jstor.org/stable/41948574
    [12] Boratyńska K (2016) Corporate bankruptcy and survival on the market: Lessons from evolutionary economics. Oecon Copernic 7: 107–129. https://doi.org/10.12775/OeC.2016.008 doi: 10.12775/OeC.2016.008
    [13] Boritz JE, Kennedy DB (1995) Effectiveness of neural network types for prediction of business failure. Expert Syst Appl 9: 503–512. https://doi.org/10.1016/0957-4174(95)00020-8 doi: 10.1016/0957-4174(95)00020-8
    [14] Bowers AJ, Zhou X (2019) Receiver Operating Characteristic (ROC) Area Under the Curve (AUC): A Diagnostic Measure for Evaluating the Accuracy of Predictors of Education Outcomes. J Educ Stud Placed Risk 24: 20–46. https://doi.org/10.1080/10824669.2018.1523734 doi: 10.1080/10824669.2018.1523734
    [15] Carneiro P, Braga AC, Barroso M (2017) Work-related musculoskeletal disorders in home care nurses: Study of the main risk factors. Int J Ind Ergonom 61: 22–28. https://doi.org/10.1016/j.ergon.2017.05.002 doi: 10.1016/j.ergon.2017.05.002
    [16] Carvalho PV, Curto JD, Primor R (2020) Macroeconomic determinants of credit risk: Evidence from the Eurozone. Int J Financ Econ, 1–19. https://doi.org/10.1002/ijfe.2259 doi: 10.1002/ijfe.2259
    [17] Chen JH, Su MC, Annuerine B (2016) Exploring and weighting features for financially distressed construction companies using Swarm Inspired Projection algorithm. Adv Eng Inform 30: 376–389. https://doi.org/10.1016/j.aei.2016.05.003 doi: 10.1016/j.aei.2016.05.003
    [18] Cheng MY, Hoang ND (2015) Evaluating contractor financial status using a hybrid fuzzy instance based classifier: Case study in the construction industry. IEEE T Eng Manage 62: 184–192. https://doi.org/10.1109/TEM.2014.2384513 doi: 10.1109/TEM.2014.2384513
    [19] Choi H, Son H, Kim C (2018) Predicting financial distress of contractors in the construction industry using ensemble learning. Expert Syst Appl 110: 1–10. https://doi.org/10.1016/j.eswa.2018.05.026 doi: 10.1016/j.eswa.2018.05.026
    [20] Correia C (2012) Previsão da insolvência: evidência no setor da construção [Dissertação de Mestrado, Universidade de Aveiro]. Repositório Institucional da Universidade de Aveiro. http://hdl.handle.net/10773/9573
    [21] Costa HA (2014) Modelo de previsão de falência: o caso da construção civil em Portugal [Dissertação de Mestrado, Universidade do Algarve, Repositório da Universidade do Algarve]. http://hdl.handle.net/10400.1/8321
    [22] Cuthbertson K, Hudson J (1996) The determinants of compulsory liquidations in the U.K. Manch Sch 64: 298–308. https://doi.org/10.1111/j.1467-9957.1996.tb00487.x doi: 10.1111/j.1467-9957.1996.tb00487.x
    [23] Daoud JI (2017) Multicollinearity and Regression Analysis. J Phys (Conference Series) 949: 1–6. https://doi.org/10.1088/1742-6596/949/1/012009 doi: 10.1088/1742-6596/949/1/012009
    [24] Dimitras AI, Zanakis SH, Zopounidis C (1996) A survey of business failures with an emphasis on prediction methods and industrial applications. Eur J Oper Res 90: 487–513. https://doi.org/10.1016/0377-2217(95)00070-4 doi: 10.1016/0377-2217(95)00070-4
    [25] Etemadi H, Rostamy AAA, Dehkordi HF (2009) A genetic programming model for bankruptcy prediction: Empirical evidence from Iran. Expert Sys Appl 36: 3199–3207. https://doi.org/10.1016/j.eswa.2008.01.012 doi: 10.1016/j.eswa.2008.01.012
    [26] European Commission (2021 October) European Construction Sector Observatory. Available from: https://ec.europa.eu/docsroom/documents/47918/attachments/1/translations/en/renditions/native
    [27] Giriūniene G, Giriūnas L, Morkunas M, et al. (2019) A comparison on leading methodologies for bankruptcy prediction: The case of the construction sector in Lithuania. Economies 7: 1–20. https://doi.org/10.3390/economies7030082 doi: 10.3390/economies7030082
    [28] Gotts SJ, Gilmore AW, Martin A (2020) Brain networks, dimensionality, and global signal averaging in resting-state fMRI: Hierarchical network structure results in low-dimensional spatiotemporal dynamics. NeuroImage 205: 1–17. https://doi.org/10.1016/j.neuroimage.2019.116289 doi: 10.1016/j.neuroimage.2019.116289
    [29] Habib A, Costa MD, Huang HJ, et al. (2020) Determinants and consequences of financial distress: review of the empirical literature. Account Financ 60: 1023–1075. https://doi.org/10.1111/acfi.12400 doi: 10.1111/acfi.12400
    [30] Hair JF, Black WC, Babin BJ, et al. (2019) Multivariate Data Analysis (8th ed.), Cengage Learning.
    [31] Hajian-Tilaki K (2013) Receiver operating characteristic (ROC) curve analysis for medical diagnostic test evaluation. Casp J Int Med 4: 627–635. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3755824/
    [32] Heo J, Yang JY (2014) AdaBoost based bankruptcy forecasting of Korean construction companies. Appl Soft Comput 24: 494–499. https://doi.org/10.1016/j.asoc.2014.08.009 doi: 10.1016/j.asoc.2014.08.009
    [33] Horta IM, Camanho AS (2013) Company failure prediction in the construction industry. Expert Syst Appl 40: 6253–6257. https://doi.org/10.1016/j.eswa.2013.05.045 doi: 10.1016/j.eswa.2013.05.045
    [34] Hudson J (1986) An analysis of company liquidations. Appl Econ 18: 219–235. https://doi.org/10.1080/00036848600000025 doi: 10.1080/00036848600000025
    [35] ben Jabeur S, Mefteh-Wali S, Carmona P (2021) The impact of institutional and macroeconomic conditions on aggregate business bankruptcy. Struct Change Econ D 59: 108–119. https://doi.org/10.1016/j.strueco.2021.08.010 doi: 10.1016/j.strueco.2021.08.010
    [36] Ben Jabeur S, Stef N, Carmona P (2022) Bankruptcy Prediction using the XGBoost Algorithm and Variable Importance Feature Engineering. Comput Econ, 1–27. https://doi.org/10.1007/s10614-021-10227-1 doi: 10.1007/s10614-021-10227-1
    [37] Jones S, Wang T (2019) Predicting private company failure: A multi-class analysis. J Int Financ Mark Inst Money 61: 161–188. https://doi.org/10.1016/j.intfin.2019.03.004 doi: 10.1016/j.intfin.2019.03.004
    [38] Kapliński O (2008) Usefulness and credibility of scoring methods in construction industry. J Civil Eng Manage 14: 21–28. https://doi.org/10.3846/1392-3730.2008.14.21-28 doi: 10.3846/1392-3730.2008.14.21-28
    [39] Karas M, Režňáková M (2017a) Predicting the bankruptcy of construction companies: A CART-based model. Eng Econ 28: 145–154. https://doi.org/10.5755/j01.ee.28.2.16353 doi: 10.5755/j01.ee.28.2.16353
    [40] Karas M, Režňáková M (2017b) The potential of dynamic indicator in development of the bankruptcy prediction models: The case of construction companies. Acta Univ Agr Silviculturae Mendelianae Brunensis 65: 641–652. https://doi.org/10.11118/actaun201765020641 doi: 10.11118/actaun201765020641
    [41] Karas M, Režňáková M (2017c) The stability of bankruptcy predictors in the construction and manufacturing industries at various times before bankruptcy. Ekonomika Manage 20: 116–133. https://doi.org/10.15240/tul/001/2017-2-009 doi: 10.15240/tul/001/2017-2-009
    [42] Karas M, Srbová P (2019) Predicting bankruptcy in construction business: Traditional model validation and formulation of a new model. J Int Stud 12: 283–296. https://doi.org/10.14254/2071-8330.2019/12-1/19 doi: 10.14254/2071-8330.2019/12-1/19
    [43] Karels GV, Prakash AJ (1987) Multivariate Normality and Forecasting of Business Bankruptcy. J Bus Financ Account 14: 573–593. https://doi.org/10.1111/j.1468-5957.1987.tb00113.x doi: 10.1111/j.1468-5957.1987.tb00113.x
    [44] Karminsky A, Burekhin R (2019) Comparative analysis of methods for forecasting bankruptcies of Russian construction companies. Bus Inf 13: 52–66. https://doi.org/10.17323/1998-0663.2019.3.52.66 doi: 10.17323/1998-0663.2019.3.52.66
    [45] Kim YJ, Cribbie RA (2018) ANOVA and the variance homogeneity assumption: Exploring a better gatekeeper. British J Math Stat Psychol 71: 1–12. https://doi.org/10.1111/bmsp.12103 doi: 10.1111/bmsp.12103
    [46] Koksal A, Arditi D (2004) Predicting Construction Company Decline. J Constr Eng Manage 130: 799–807. https://doi.org/10.1061/(asce)0733-9364(2004)130:6(799) doi: 10.1061/(asce)0733-9364(2004)130:6(799)
    [47] Kuběnka M, Myšková R (2019) Obvious and hidden features of corporate default in bankruptcy models. J Bus Econ Manage 20: 368–383. https://doi.org/10.3846/jbem.2019.9612 doi: 10.3846/jbem.2019.9612
    [48] Kwak SG, Kim JH (2017) Central limit theorem: The cornerstone of modern statistics. Korean J Anesthesiology 70: 144–156. https://doi.org/10.4097/kjae.2017.70.2.144 doi: 10.4097/kjae.2017.70.2.144
    [49] Kwak SG, Park SH (2019) Normality Test in Clinical Research. J Rheumatic Dis 26: 5–11. https://doi.org/10.4078/jrd.2019.26.1.5 doi: 10.4078/jrd.2019.26.1.5
    [50] Lafi SQ, Kaneene JB (1992) An explanation of the use of principal-components analysis to detect and correct for multicollinearity. Prev Vet Med 13: 261–275. https://doi.org/10.1016/0167-5877(92)90041-D doi: 10.1016/0167-5877(92)90041-D
    [51] Lagesh MA, Srikanth M, Acharya D (2018) Corporate Performance during Business Cycles: Evidence from Indian Manufacturing Firms. Global Bus Rev 19: 1–14. https://doi.org/10.1177/0972150918788740 doi: 10.1177/0972150918788740
    [52] Lee KC, Han I, Kwon Y (1996) Hybrid neural network models for bankruptcy predictions. Decis Support Syst 18: 63–72. https://doi.org/10.1016/0167-9236(96)00018-8 doi: 10.1016/0167-9236(96)00018-8
    [53] Lee S, Choi WS (2013) A multi-industry bankruptcy prediction model using back-propagation neural network and multivariate discriminant analysis. Expert Syst Appl 40: 2941–2946. https://doi.org/10.1016/j.eswa.2012.12.009 doi: 10.1016/j.eswa.2012.12.009
    [54] Lessmann S, Baesens B, Seow HV, et al. (2015) Benchmarking state-of-the-art classification algorithms for credit scoring: An update of research. Eur J Oper Res 247: 124–136. https://doi.org/10.1016/j.ejor.2015.05.030 doi: 10.1016/j.ejor.2015.05.030
    [55] Ling CX, Huang J, Zhang H (2003) AUC: A better measure than accuracy in comparing learning algorithms [Paper presentation]. Conference of the Canadian Society for Computational Studies of Intelligence, Berlin, Heidelberg. Available from: https://doi.org/10.1007/3-540-44886-1_25
    [56] Liu J (2004) Macroeconomic determinants of corporate failures: Evidence from the UK. Appl Econ 36: 939–945. https://doi.org/10.1080/0003684042000233168 doi: 10.1080/0003684042000233168
    [57] Liu RX, Kuang J, Gong Q, et al. (2003) Principal component regression analysis with SPSS. Comput Meth Prog Biomed 71: 141–147. https://doi.org/10.1016/S0169-2607(02)00058-5 doi: 10.1016/S0169-2607(02)00058-5
    [58] Liu W, Jiang Q, Sun C, Liu S, et al. (2022) Developing a 5-gene prognostic signature for cervical cancer by integrating mRNA and copy number variations. BMC Cancer 22: 1–16. https://doi.org/10.1186/s12885-022-09291-z doi: 10.1186/s12885-022-09291-z
    [59] Lucanera JP, Fabregat-Aibar L, Scherger V, et al. (2020) Can the SOM analysis predict business failure using capital structure theory? Evidence from the subprime crisis in Spain. Axioms 9: 1–13. https://doi.org/10.3390/AXIOMS9020046 doi: 10.3390/AXIOMS9020046
    [60] Lydersen S (2015) Statistical review: Frequently given comments. Ann Rheumat Dis 74: 323–325. https://doi.org/10.1136/annrheumdis-2014-206186 doi: 10.1136/annrheumdis-2014-206186
    [61] Ma J, Li C (2021) A comparison of Logit and Probit models using Monte Carlo simulation [Paper presentation]. 2021 40th Chinese Control Conference (CCC), Shanghai, China. Available from: https://doi.org/10.23919/CCC52363.2021.9550250
    [62] Manel S, Ceri Williams H, Ormerod SJ (2001) Evaluating presence-absence models in ecology: The need to account for prevalence. J Appl Ecology 38: 921–931. https://doi.org/10.1046/j.1365-2664.2001.00647.x doi: 10.1046/j.1365-2664.2001.00647.x
    [63] Mbaluka MK, Muriithi DK, Njoroge GG (2022) Application of Principal Component Analysis and Hierarchical Regression Model on Kenya Macroeconomic Indicators. Eur J Math Stat 3: 26–38. https://doi.org/10.24018/ejmath.2022.3.1.74 doi: 10.24018/ejmath.2022.3.1.74
    [64] Min SH, Lee J, Han I (2006) Hybrid genetic algorithms and support vector machines for bankruptcy prediction. Expert Syst Appl 31: 652–660. https://doi.org/10.1016/j.eswa.2005.09.070 doi: 10.1016/j.eswa.2005.09.070
    [65] Mselmi N, Lahiani A, Hamza T (2017) Financial distress prediction: The case of French small and medium-sized firms. Int Rev Financ Anal 50: 67–80. https://doi.org/10.1016/j.irfa.2017.02.004 doi: 10.1016/j.irfa.2017.02.004
    [66] Murphy KR (2021) In praise of Table 1: The importance of making better use of descriptive statistics. Ind Organ Psychol 14: 461–477. https://doi.org/10.1017/IOP.2021.90 doi: 10.1017/IOP.2021.90
    [67] Neves JCD (2012) Análise e Relato Financeiro—Uma visão integrada de gestão (5th ed.), Texto Editores, Lda.
    [68] Ng ST, Wong JM, Zhang J (2011) Applying Z-score model to distinguish insolvent construction companies in China. Habitat Int 35: 599–607. https://doi.org/10.1016/j.habitatint.2011.03.008 doi: 10.1016/j.habitatint.2011.03.008
    [69] Nouri BA, Soltani M (2016) Designing a bankruptcy prediction model based on account, market and macroeconomic variables (Case Study: Cyprus Stock Exchange). Iranian J Manage Stud 9: 125–147. https://doi.org/10.22059/ijms.2016.55038 doi: 10.22059/ijms.2016.55038
    [70] Obradović DB, Jakaić D, Rupić IB, et al. (2018) Insolvency prediction model of the company: The case of the republic of serbia. Econ Res-Ekon Istraz 31: 138–157. https://doi.org/10.1080/1331677X.2017.1421990 doi: 10.1080/1331677X.2017.1421990
    [71] OECD Statistics (2022) SDBS Business Demography Indicators (ISIC Rev. 4) : Birth rate of enterprises. Available from: https://stats.oecd.org/index.aspx?queryid=81074
    [72] Ohlson JA (1980) Financial Ratios and the Probabilistic Prediction of Bankruptcy. J Account Res 18: 109–131. https://doi.org/10.2307/2490395 doi: 10.2307/2490395
    [73] Oliveira MPG (2014) A insolvência empresarial na indústria transformadora portuguesa: as determinantes financeiras e macroeconómicas [Dissertação de Mestrado, Universidade do Porto]. Repositório Aberto da Universidade do Porto. Available from: https://repositorio-aberto.up.pt/handle/10216/77110
    [74] Pacheco L, Rosa R, Oliveria Tavares F (2019) Risco de Falência de PME: Evidência no setor da construção em Portugal. Innovar 29: 143–157. https://doi.org/10.15446/innovar.v29n71.76401 doi: 10.15446/innovar.v29n71.76401
    [75] Perboli G, Arabnezhad E (2021) A Machine Learning-based DSS for mid and long-term company crisis prediction. Expert Syst Appl 174: 1–12. https://doi.org/10.1016/j.eswa.2021.114758 doi: 10.1016/j.eswa.2021.114758
    [76] Pham Vo Ninh B, Do Thanh T, Vo Hong D (2018) Financial distress and bankruptcy prediction: An appropriate model for listed firms in Vietnam. Econ Syst 42: 616–624. https://doi.org/10.1016/j.ecosys.2018.05.002 doi: 10.1016/j.ecosys.2018.05.002
    [77] Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190: 231–259. https://doi.org/10.1016/j.ecolmodel.2005.03.026 doi: 10.1016/j.ecolmodel.2005.03.026
    [78] da Pimenta IC (2015) Modelos de previsão de falência - análise econométrica do setor da construção civil na UE [Dissertação de Mestrado, Universidade do Porto]. Repositório Aberto da Universidade do Porto. Available from: https://repositorio-aberto.up.pt/handle/10216/81446
    [79] Platt HD, Platt MB (1994) Business cycle effects on state corporate failure rates. J Econ Bus 46: 113–127. https://doi.org/10.1016/0148-6195(94)90005-1 doi: 10.1016/0148-6195(94)90005-1
    [80] Platt HD, Platt MB (2002) Predicting corporate financial distress: Reflections on choice-based sample bias. J Econ Financ 26: 184–199. https://doi.org/10.1007/bf02755985 doi: 10.1007/bf02755985
    [81] Pompe PPM, Bilderbeek J (2005) The prediction of bankruptcy of small- and medium-sized industrial firms. J Bus Venturing 20: 847–868. https://doi.org/10.1016/j.jbusvent.2004.07.003 doi: 10.1016/j.jbusvent.2004.07.003
    [82] PORDATA (2022) Taxa de mortalidade das empresas: total e por sector de actividade económica. Available from: https://www.pordata.pt/Portugal/Taxa+de+mortalidade+das+empresas+total+e+por+sector+de+actividade+económica-2888
    [83] da Rosa RFC (2017) Risco de falência de PME: evidência no setor da construção em Portugal [Dissertação de Mestrado, Universidade de Aveiro]. Repositório Institucional da Universidade de Aveiro. Available from: http://hdl.handle.net/10773/23050
    [84] Sánchez-Lasheras F, De Andrés J, Lorca P, et al. (2012) A hybrid device for the solution of sampling bias problems in the forecasting of firms' bankruptcy. Expert Syst Appl 39: 7512–7523. https://doi.org/10.1016/j.eswa.2012.01.135 doi: 10.1016/j.eswa.2012.01.135
    [85] dos Santos AR, Silva N (2019) Sectoral concentration risk in Portuguese banks' loan exposures to non-financial firms. Banco Portugal Econ Stud, 1–17. https://www.bportugal.pt/en/paper/sectoral-concentration-risk-portuguese-banks-loan-exposures-non-financial-firms
    [86] Serrano-Cinca C, Gutiérrez-Nieto B, Bernate-Valbuena M (2019) The use of accounting anomalies indicators to predict business failure. Eur Manage J 37: 353–375. https://doi.org/10.1016/j.emj.2018.10.006 doi: 10.1016/j.emj.2018.10.006
    [87] Shi Y, Li X (2019) An overview of bankruptcy prediction models for corporate firms: A systematic literature review. Intang Cap 15: 114–127. https://doi.org/10.3926/ic.1354 doi: 10.3926/ic.1354
    [88] Shumway T (2001) Forecasting bankruptcy more accurately: A simple hazard model. J Bus 74: 101–124. https://doi.org/10.1086/209665 doi: 10.1086/209665
    [89] Silva AFR (2014) Bankruptcy forecasting models civil construction [Dissertação de Mestrado, Instituto Universitário de Lisboa]. Repositório do Iscte—Instituto Universitário de Lisboa. Available from: http://hdl.handle.net/10071/10978
    [90] Succurro M, Arcuri G, Costanzo GD (2019) A combined approach based on robust PCA to improve bankruptcy forecasting. Rev Account Financ 18: 296–320. https://doi.org/10.1108/RAF-04-2018-0077 doi: 10.1108/RAF-04-2018-0077
    [91] Sulaiman MS, Abood MM, Sinnakaudan SK, et al. (2021) Assessing and solving multicollinearity in sediment transport prediction models using principal component analysis. ISH J Hydraul Eng 27: 343–353. https://doi.org/10.1080/09715010.2019.1653799 doi: 10.1080/09715010.2019.1653799
    [92] Taffler RJ (1984) Empirical models for the monitoring of UK corporations. J Bank Financ 8: 199–227. https://doi.org/10.1016/0378-4266(84)90004-9 doi: 10.1016/0378-4266(84)90004-9
    [93] Tinoco MH, Holmes P, Wilson N (2018) Polytomous response financial distress models: The role of accounting, market and macroeconomic variables. International Review of Financial Analysis, 59, 276–289. https://doi.org/10.1016/j.irfa.2018.03.017 doi: 10.1016/j.irfa.2018.03.017
    [94] Tinoco MH, Wilson N (2013) Financial distress and bankruptcy prediction among listed companies using accounting, market and macroeconomic variables. Int Rev Financ Anal 30: 394–419. https://doi.org/10.1016/j.irfa.2013.02.013 doi: 10.1016/j.irfa.2013.02.013
    [95] Tserng HP, Chen PC, Huang WH, et al. (2014) Prediction of default probability for construction firms using the logit model. J Civ Eng Manag 20: 247–255. https://doi.org/10.3846/13923730.2013.801886 doi: 10.3846/13923730.2013.801886
    [96] Tserng HP, Liao HH, Jaselskis EJ, et al. (2012) Predicting Construction Contractor Default with Barrier Option Model. J Constr Eng M 138: 621–630. https://doi.org/10.1061/(asce)co.1943-7862.0000465 doi: 10.1061/(asce)co.1943-7862.0000465
    [97] Uthayakumar J, Metawa N, Shankar K, et al. (2020) Financial crisis prediction model using ant colony optimization. Int J Inf Manage 50: 538–556. https://doi.org/10.1016/j.ijinfomgt.2018.12.001 doi: 10.1016/j.ijinfomgt.2018.12.001
    [98] Vieira ES, Pinho C, Correia C (2013) Insolvency prediction in the Portuguese construction industry. Marmara J Eur Stud 21: 143–164. Available from: https://www.researchgate.net/publication/263037318_Insolvency_prediction_in_the_Portuguese_construction_industry
    [99] Vo DH, Pham BNV, Ho CM, et al. (2019) Corporate Financial Distress of Industry Level Listings in Vietnam. J Risk Financ Manage 12: 1–17. https://doi.org/10.3390/jrfm12040155 doi: 10.3390/jrfm12040155
    [100] Wellek S, Blettner M (2012) On the Proper Use of the Crossover Design in Clinical Trials. Dtsch Arztebl Int 109: 276–281. https://doi.org/10.3238/arztebl.2012.0276 doi: 10.3238/arztebl.2012.0276
    [101] Wood MD, Simmatis LER, Jacobson JA, et al. (2021) Principal Components Analysis Using Data Collected From Healthy Individuals on Two Robotic Assessment Platforms Yields Similar Behavioral Patterns. Front Hum Neurosci 15: 1–12. https://doi.org/10.3389/fnhum.2021.652201 doi: 10.3389/fnhum.2021.652201
    [102] Wu CH, Tzeng GH, Goo YJ, et al. (2007) A real-valued genetic algorithm to optimize the parameters of support vector machine for predicting bankruptcy. Expert Syst Appl 32: 397–408. https://doi.org/10.1016/j.eswa.2005.12.008 doi: 10.1016/j.eswa.2005.12.008
    [103] Wu T (2021) Quantifying coastal flood vulnerability for climate adaptation policy using principal component analysis. Ecol Indic 129: 1–12. https://doi.org/10.1016/j.ecolind.2021.108006 doi: 10.1016/j.ecolind.2021.108006
    [104] Yan D, Chi G, Lai KK (2020) Financial Distress Prediction and Feature Selection in Multiple Periods by Lassoing Unconstrained Distributed Lag Non-linear Models. Mathematics 8: 1–29. https://doi.org/10.3390/math8081275 doi: 10.3390/math8081275
    [105] Young G (1995) Company liquidations, interest rates and debt. Manch Sch Econ Soc Stud 63: 57–69. https://doi.org/10.1111/j.1467-9957.1995.tb01448.x doi: 10.1111/j.1467-9957.1995.tb01448.x
    [106] Zavgren CV (1985) Assessing the Vulnerability to failure of American Industrial Firms: a Logistic Analysis. J Bus Financ Account 12: 19–45. https://doi.org/10.1111/j.1468-5957.1985.tb00077.x doi: 10.1111/j.1468-5957.1985.tb00077.x
    [107] Zhang Z (2016) Variable selection with stepwise and best subset approaches. Ann Transl Med 4: 1–6. https://doi.org/10.21037/atm.2016.03.35 doi: 10.21037/atm.2016.03.35
    [108] Žiković IT (2016) Modelling the impact of macroeconomic variables on aggregate corporate insolvency: Case of Croatia. Econ Res-Ekon Istraz 29: 515–528. https://doi.org/10.1080/1331677X.2016.1175727 doi: 10.1080/1331677X.2016.1175727
    [109] Zoričák M, Gnip P, Drotár P, et al. (2020) Bankruptcy prediction for small- and medium-sized companies using severely imbalanced datasets. Econ Model 84: 165–176. https://doi.org/10.1016/j.econmod.2019.04.003 doi: 10.1016/j.econmod.2019.04.003
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4298) PDF downloads(602) Cited by(7)

Article outline

Figures and Tables

Figures(3)  /  Tables(12)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog