Research article

Pricing hybrid-triggered catastrophe bonds based on copula-EVT model

  • Received: 26 February 2022 Revised: 06 May 2022 Accepted: 10 May 2022 Published: 17 May 2022
  • JEL Codes: G15, G22

  • This paper presents a hybrid-triggered catastrophe bond (CAT bond) pricing model. We take earthquake CAT bonds as an example for model construction and numerical analysis. According to the characteristics of earthquake disasters, we choose direct economic loss and magnitude as trigger indicators. The marginal distributions of the two trigger indicators are depicted using extreme value theory, and the joint distribution is established by using a copula function. Furthermore, we derive a multi-year hybrid-triggered CAT bond pricing formula under stochastic interest rates. The numerical experiments show that the bond price is negatively correlated with maturity, market interest rate and dependence of trigger indicators, and positively correlated with trigger level and coupon rate. This study can be used as a reference for formulating reasonable CAT bond pricing strategies.

    Citation: Longfei Wei, Lu Liu, Jialong Hou. Pricing hybrid-triggered catastrophe bonds based on copula-EVT model[J]. Quantitative Finance and Economics, 2022, 6(2): 223-243. doi: 10.3934/QFE.2022010

    Related Papers:

  • This paper presents a hybrid-triggered catastrophe bond (CAT bond) pricing model. We take earthquake CAT bonds as an example for model construction and numerical analysis. According to the characteristics of earthquake disasters, we choose direct economic loss and magnitude as trigger indicators. The marginal distributions of the two trigger indicators are depicted using extreme value theory, and the joint distribution is established by using a copula function. Furthermore, we derive a multi-year hybrid-triggered CAT bond pricing formula under stochastic interest rates. The numerical experiments show that the bond price is negatively correlated with maturity, market interest rate and dependence of trigger indicators, and positively correlated with trigger level and coupon rate. This study can be used as a reference for formulating reasonable CAT bond pricing strategies.



    加载中


    [1] Acero FJ, Parey S, Garcia JA, et al. (2018) Return level estimation of extreme rainfall over the Iberian Peninsula: Comparison of methods. Water 10: 179. https://doi.org/10.3390/w10020179 doi: 10.3390/w10020179
    [2] Balkema AA, Haan L (1974) Residual lifetime at great age. Ann Probab 2: 792–804. https://www.jstor.org/stable/2959306
    [3] Bokusheva R (2014) Improving the effectiveness of weather-based insurance: An application of copula approach. MPRA Paper 62339, University Library of Munich, Germany. https://mpra.ub.uni-muenchen.de/62339/
    [4] Bouriaux S, MacMinn R (2009) Securitization of catastrophe risk: New developments in insurance-linked securities and derivatives. J Insur Iss 32: 1–34. http://www.jstor.org/stable/41946289
    [5] Braun A (2011) Pricing catastrophe swaps: A contingent claims approach. Insur Math Econ 49: 520–536. https://doi.org/10.1016/j.insmatheco.2011.08.003 doi: 10.1016/j.insmatheco.2011.08.003
    [6] Cai Y, Cai J, Xu L, et al. (2019) Integrated risk analysis of water-energy nexus systems based on systems dynamics, orthogonal design and copula analysis. Renew Sust Energ Rev 99: 125–137. https://doi.org/10.1016/j.rser.2018.10.001 doi: 10.1016/j.rser.2018.10.001
    [7] Chao W (2021) Valuing multirisk catastrophe reinsurance based on the Cox-Ingersoll-Ross (CIR) model. Discrete Dyn Nat Soc 2021: 8818486. https://doi.org/10.1155/2021/8818486 doi: 10.1155/2021/8818486
    [8] Chao W, Zou HW (2018) Multiple-event catastrophe bond pricing based on CIR-Copula-POT model. Discrete Dyn Nat Soc 2018: 5068480. https://doi.org/10.1155/2018/5068480 doi: 10.1155/2018/5068480
    [9] Chebbi A, Hedhli A (2020) Revisiting the accuracy of standard VaR methods for risk assessment: Using the copula-EVT multidimensional approach for stock markets in the MENA region. Q Rev Econ Financ. https://doi.org/10.1016/j.qref.2020.09.005 doi: 10.1016/j.qref.2020.09.005
    [10] Chen JF, Liu GY, Yang L, et al. (2013) Pricing and simulation for extreme flood catastrophe bonds. Water Resour Manag 27: 3713–3725. https://doi.org/10.1007/s11269-013-0376-2 doi: 10.1007/s11269-013-0376-2
    [11] Chukwudum QC, Mwita P, Mung'atu JK (2020) Optimal threshold determination based on the mean excess plot. Commun Stat-Theor M 49: 5948–5963. https://doi.org/10.1080/03610926.2019.1624772 doi: 10.1080/03610926.2019.1624772
    [12] Cox SH, Pedersen HW (2000) Catastrophe risk bonds. N Am Actuar J 4: 56–82. https://dx.doi.org/10.1080/10920277.2000.10595938 doi: 10.1080/10920277.2000.10595938
    [13] Cox JC, Ingersoll JE, Ross SA (1985) A theory of the term structure of interest rates. Econometrica 53: 385–407. https://doi.org/10.2307/1911242 doi: 10.2307/1911242
    [14] Cummins JD, Weiss MA (2009) Convergence of insurance and financial markets: Hybrid and securitized risk-transfer solutions. J Risk Insur 76: 493–545. https://doi.org/10.1111/j.1539-6975.2009.01311.x doi: 10.1111/j.1539-6975.2009.01311.x
    [15] Deng GQ, Liu SQ, Deng CS (2020) Research on the pricing of global drought catastrophe bonds. Math Probl Eng 2020: 3898191. https://doi.org/10.1155/2020/3898191 doi: 10.1155/2020/3898191
    [16] Frees EW, Valdez EA (1998) Understanding relationships using copulas. N Am Actuar J 2: 1–25. https://doi.org/10.1080/10920277.1998.10595667 doi: 10.1080/10920277.1998.10595667
    [17] Gu YK, Fan CJ, Liang LQ, et al. (2019) Reliability calculation method based on the copula function for mechanical systems with dependent failure. Ann Oper Res 311: 99–116. https://doi.org/10.1007/s10479-019-03202-5 doi: 10.1007/s10479-019-03202-5
    [18] Kurniawan H, Putri ER, Imron C, et al. (2021) Monte Carlo method to valuate CAT bonds of flood in Surabaya under jump diffusion process. J Phys Conf Ser 1821: 012026. http://dx.doi.org/10.1088/1742-6596/1821/1/012026 doi: 10.1088/1742-6596/1821/1/012026
    [19] Lee JP, Yu MT (2002) Pricing default-risky CAT bonds with moral hazard and basis risk. J Risk Insur 69: 25–44. https://doi.org/10.1111/1539-6975.00003 doi: 10.1111/1539-6975.00003
    [20] Lee JP, Yu MT (2007) Valuation of catastrophe reinsurance with catastrophe bonds. Insur Math Econ 41: 264–278. https://doi.org/10.1016/j.insmatheco.2006.11.003 doi: 10.1016/j.insmatheco.2006.11.003
    [21] Litzenberger RH, Beaglehole DR, Reynolds CE (1996) Assessing catastrophe reinsurance-linked securities as a new asset class. J Portfolio Manage 23: 76–86. https://doi.org/10.3905/jpm.1996.076 doi: 10.3905/jpm.1996.076
    [22] Liu XH, Meng SW, Li ZX (2019) Copula-mixed distribution model and its application in modeling earthquake loss in China. Syst Eng Theor Pract 39: 1855–1866. https://doi.org/10.12011/1000-6788-2017-2116-12 doi: 10.12011/1000-6788-2017-2116-12
    [23] Lo CL, Lee JP, Yu MT (2013) Valuation of insurers' contingent capital with counterparty risk and price endogeneity. J Bank Financ 37: 5025–5035. https://doi.org/10.1016/j.jbankfin.2013.09.007. doi: 10.1016/j.jbankfin.2013.09.007
    [24] Ma N, Bai YB, Meng SW (2021) Return period evaluation of the largest possible earthquake magnitudes in mainland China based on extreme value theory. Sensors 21: 3519. https://doi.org/10.3390/s21103519 doi: 10.3390/s21103519
    [25] Ma ZG, Ma CQ (2013) Pricing catastrophe risk bonds: A mixed approximation method. Insur Math Econ 52: 243–254. https://doi.org/10.1016/j.insmatheco.2012.12.007 doi: 10.1016/j.insmatheco.2012.12.007
    [26] Ma ZG, Ma CQ, Xiao SS (2017) Pricing zero-coupon catastrophe bonds using EVT with doubly stochastic poisson arrivals. Discrete Dyn Nat Soc 2017: 3279647. https://doi.org/10.1155/2017/3279647 doi: 10.1155/2017/3279647
    [27] McNeil AJ, Frey R (2000) Estimation of tail-related risk measures for heteroscedastic financial time series: An extreme value approach. J Empir Financ 7: 271–300. https://doi.org/10.1016/S0927-5398(00)00012-8 doi: 10.1016/S0927-5398(00)00012-8
    [28] Merton RC (1976) Option prices when underlying stock returns are discontinuous. J Financ Econ 3: 125–144. https://doi.org/10.1016/0304-405X(76)90022-2 doi: 10.1016/0304-405X(76)90022-2
    [29] Mousavi M, Akkar S, Erdik M (2019) A candidate proxy to be used in intensity-based triggering mechanism for parametric CAT-bond insurance: Istanbul case study. Earthq Spectra 35: 565–588. https://doi.org/10.1193/081018EQS201M doi: 10.1193/081018EQS201M
    [30] Nowak P, Romaniuk M (2013) Pricing and simulations of catastrophe bonds. Insur Math Econ 52: 18–28. https://doi.org/10.1016/j.insmatheco.2012.10.006 doi: 10.1016/j.insmatheco.2012.10.006
    [31] Pickands J (1975) Statistical inference using extreme order statistics. Ann Stat 3: 119–131. https://www.jstor.org/stable/2958083
    [32] Reshetar G (2008) Pricing of multiple-event coupon paying CAT bond. SSRN Electron J. http://dx.doi.org/10.2139/ssrn.1059021 doi: 10.2139/ssrn.1059021
    [33] Romaniuk M (2017) Analysis of the insurance portfolio with an embedded catastrophe bond in a case of uncertain parameter of the insurer's share. Adv Intel Syst Comput 524: 33–43. http://dx.doi.org/10.1007/978-3-319-46592-0_3 doi: 10.1007/978-3-319-46592-0_3
    [34] Shao J, Pantelous A, Papaioannou AD (2015) Catastrophe risk bonds with applications to earthquakes. Eur Actuar J 5: 113–138. https://doi.org/10.1007/s13385-015-0104-9 doi: 10.1007/s13385-015-0104-9
    [35] Shen L, Zhang Y, Zhuang X, et al. (2018) Reliability modeling for gear door lock system with dependent failures based on copula. ASME J Risk Uncertainty Part B 4: 041003. https://doi.org/10.1115/1.4039941 doi: 10.1115/1.4039941
    [36] Sklar M (1959) Fonctions de repartition an dimensions et leurs marges. Publ Inst Statist Univ Paris 8: 229–231.
    [37] Smack L (2016) Catastrophe bonds-Regulating a growing asset class. Risk Manage Insur Rev 19: 105–125. https://doi.org/10.1111/rmir.12057 doi: 10.1111/rmir.12057
    [38] Swiss Re (2020) Natural catastrophes in 2020: Secondary perils in the spotlight, but don't forget primary-peril risks. Sigma 1/2021, Zurich, Switzerland. Available from: https://www.swissre.com/institute/research/sigma-research/sigma-2021-01.html
    [39] Tao Z (2011) Zero-beta characteristic of CAT bonds. 2011 Fourth International Conference on Business Intelligence and Financial Engineering, 641–644. https://doi.ieeecomputersociety.org/10.1109/BIFE.2011.159
    [40] Woo G (2004) A catastrophe bond niche: Multiple event risk. Working Paper, NBER Insurance Group Work-Shop, Cambridge, UK. Available from: https://conference.nber.org/confer/2004/insw04/woo.pdf
    [41] Xu LY, Wang HM, Chen JF (2013) Research of drought disaster risk assessment based on copula-EVT model. Appl Stat Manage 32: 284–294.
    [42] Yao CZ, Sun BY, Lin JN (2017) A study of correlation between investor sentiment and stock market based on copula model. Kybernetes 46: 550-571. https://doi.org/10.1108/K-10-2016-0297 doi: 10.1108/K-10-2016-0297
    [43] Zhang XL, Tsai CCL (2018) The optimal write-down coefficients in a percentage for a catastrophe bond. N Am Actuar J 22: 1–21. https://doi.org/10.1080/10920277.2017.1283236 doi: 10.1080/10920277.2017.1283236
    [44] Zimbidis AA, Frangos NE, Pantelous AA (2007) Modeling earthquake risk via extreme value theory and pricing the respective catastrophe bonds. Astin Bull 37: 163–183. https://doi.org/10.1017/S0515036100014793 doi: 10.1017/S0515036100014793
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2887) PDF downloads(221) Cited by(8)

Article outline

Figures and Tables

Figures(6)  /  Tables(11)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog