Citation: Kai R. Wenger, Christian H. Leschinski, Philipp Sibbertsen. The memory of volatility[J]. Quantitative Finance and Economics, 2018, 2(1): 622-644. doi: 10.3934/QFE.2018.1.137
[1] | Andersen TG, Bollerslev T, Diebold FX, et al. (2001) The distribution of realized exchange rate volatility. J Am Statist Associ 96: 42-55. |
[2] | Andersen TG, Bollerslev T, Diebold FX, et al. (2003) Modeling and forecasting realized volatility. Econom 71: 579-625. |
[3] | Andrews DWK, Sun Y (2004) Adaptive Local Polynomial Whittle Estimation of Long-range Dependence. Econom 72: 569-614. |
[4] | Arteche J (2004) Gaussian semiparametric estimation in long memory in stochastic volatility and signal plus noise models. J Econom 119: 131-154. |
[5] | Arteche J, Orbe J (2016) A bootstrap approximation for the distribution of the Local Whittle estimator. Comput Stat Data Anal 100: 645-660. |
[6] | Barndorff-Nielsen OE, Hansen PR, Lunde A, et al. (2009) Realized kernels in practice: Trades and quotes. Econom J 12: C1-C32. |
[7] | Barndorff-Nielsen OE, Shephard N (2002) Econometric analysis of realized volatility and its use in estimating stochastic volatility models. J Royal Stat Soc: Ser B (Statist Methodol) 64: 253-280. |
[8] | Chiriac R, Voev V (2011) Modelling and forecasting multivariate realized volatility. J Appl Econom 26: 922-947. |
[9] | Corsi F (2009) A simple approximate long-memory model of realized volatility. J Financ Econom 7: 174-196. |
[10] | Deo RS, Hurvich CM, Lu Y (2006) Forecasting realized volatility using a long-memory stochastic volatility model: estimation, prediction and seasonal adjustment. J Econom 131: 29-58. |
[11] | Deo RS, Hurvich CM (2001) On the log periodogram regression estimator of the memory parameter in long memory stochastic volatility models. Econom Theory 17: 686-710. |
[12] | Diebold FX, Inoue A (2001) Long memory and regime switching. J Econom 105: 131-159. |
[13] | Frederiksen P, Nielsen FS, Nielsen M (2012) Local polynomial Whittle estimation of perturbed fractional processes. J Econom 167: 426-447. |
[14] | Geweke J, Porter-Hudak S (1983) The estimation and application of long memory time series models. J Time Ser Anal 4: 221-238. |
[15] | Giraitis L, Leipus R, Surgailis D (2007) Recent advances in ARCH modelling. Long Memory Econom 3-38. |
[16] | Giraitis L, Leipus R, Surgailis D (2009) ARCH infinity models and long memory properties. Handb Financ Time Ser 71-84. |
[17] | Gourieroux C, Jasiak J (2001) Memory and infrequent breaks. Econom Lett 70: 29-41. |
[18] | Granger CWJ, Ding Z (1996) Varieties of long memory models. J Econom 73: 61-77. |
[19] | Granger CWJ, Hyung N (2004) Occasional structural breaks and long memory with an application to the S & P 500 absolute stock returns. J Empir Financ 11: 399-421. |
[20] | Heber G, Lunde A, Shephard N, et al. (2009) Oxford-Man Institutes realized library, version 0. 2, Oxford-Man Institute, University of Oxford. |
[21] | Hou J, Perron P (2014) Modified local Whittle estimator for long memory processes in the presence of low frequency (and other) contaminations. J Econom 182: 309-328. |
[22] | Hurvich CM, Moulines E, Soulier P (2005) Estimating long memory in volatility. Econom 73: 1283-1328. |
[23] | Hurvich CM, Ray BK (2003) The local Whittle estimator of long-memory stochastic volatility. J Financ Econom 1: 445-470. |
[24] | Iacone F (2010) Local Whittle estimation of the memory parameter in presence of deterministic components. J Time Ser Anal 31: 37-49. |
[25] | Künsch HR (1987) Statistical aspects of self-similar processes. Proc First World Congr Bernoulli Soc 1: 67-74. |
[26] | Leccadito A, Rachedi O, Urga G (2015) True versus spurious long memory: Some theoretical results and a monte carlo comparison. Econom Rev 34: 452-479. |
[27] | Leschinski C, Sibbertsen P (2017) Origins of Spurious Long Memory. Hann Econ Pap. |
[28] | Lu YK, Perron P (2010) Modeling and forecasting stock return volatility using a random level shift model. J Empir Financ 17: 138-156. |
[29] | Martens M, Dijk DV, de Pooter M (2009) Forecasting S & P 500 volatility: Long memory, level shifts, leverage effects, day-of-the-week seasonality, and macroeconomic announcements. Int J Forecast 25: 282-303. |
[30] | McCloskey A, Perron P (2013) Memory parameter estimation in the presence of level shifts and deterministic trends. Econom Theory 29: 1196-1237. |
[31] | Mikosch T, Stărică C (2004) Nonstationarities in financial time series, the long-range dependence, and the IGARCH effects. Rev Econ Stat 86: 378-390. |
[32] | Perron P, Qu Z (2010) Long-memory and level shifts in the volatility of stock market return indices. J Bus Econ Stat 28: 275-290. |
[33] | Qu Z (2011) A test against spurious long memory. J Bus Econ Stat 29: 423-438. |
[34] | Robinson PM (1995a) Gaussian semiparametric estimation of long range dependence. Annals Stat 23: 1630-1661. |
[35] | Robinson PM (1995b) Log-periodogram regression of time series with long range dependence. Annals Stat 23: 1048-1072. |
[36] | Sibbertsen P, Leschinski C, Busch M (2017) A multivariate test against spurious long memory. J Econom (in press). |
[37] | Velasco C (1999) Gaussian Semiparametric Estimation of Non-stationary Time Series. J Time Ser Anal 20: 87-127. |
[38] | Xu J, Perron P (2014) Forecasting return volatility: Level shifts with varying jump probability and mean reversion. Int J Forecast 30: 449-463. |