
Transparency about measurement errors in macroeconomic statistics is lacking. Inaccuracy is usually acknowledged only during extraordinary situations or under specific policy demands. Despite advances in technology and methodology, the overall accuracy has not improved due to economic changes and new complex activities. Even striking historical efforts did not change the persistence of substantial inaccuracies and biases. While the pioneers of national accounting addressed inaccuracies by using multiple accounting approaches and transparently reported error estimates, current statistical offices and other data producers rarely publish error measures, thereby creating an illusion of precision. Best practices and new measurement methods, such as satellite observation, Big Data, and Artificial Intelligence, promise improvements but face significant challenges without clear standards and an awareness of measurement error and bias. Regular and transparent reporting of measurement errors is and will be essential to improve the data reliability. Empowering data users—funding agencies, academics, and journalists—through error reporting and education can challenge the status quo.
Citation: Peter A.G. van Bergeijk. On the inaccuracies of macroeconomic observations[J]. National Accounting Review, 2024, 6(3): 367-383. doi: 10.3934/NAR.2024017
[1] | Wael S. Abu El Azm, Ramy Aldallal, Hassan M. Aljohani, Said G. Nassr . Estimations of competing lifetime data from inverse Weibull distribution under adaptive progressively hybrid censored. Mathematical Biosciences and Engineering, 2022, 19(6): 6252-6275. doi: 10.3934/mbe.2022292 |
[2] | Walid Emam, Ghadah Alomani . Predictive modeling of reliability engineering data using a new version of the flexible Weibull model. Mathematical Biosciences and Engineering, 2023, 20(6): 9948-9964. doi: 10.3934/mbe.2023436 |
[3] | Walid Emam, Khalaf S. Sultan . Bayesian and maximum likelihood estimations of the Dagum parameters under combined-unified hybrid censoring. Mathematical Biosciences and Engineering, 2021, 18(3): 2930-2951. doi: 10.3934/mbe.2021148 |
[4] | Manal M. Yousef, Rehab Alsultan, Said G. Nassr . Parametric inference on partially accelerated life testing for the inverted Kumaraswamy distribution based on Type-II progressive censoring data. Mathematical Biosciences and Engineering, 2023, 20(2): 1674-1694. doi: 10.3934/mbe.2023076 |
[5] | M. Nagy, M. H. Abu-Moussa, Adel Fahad Alrasheedi, A. Rabie . Expected Bayesian estimation for exponential model based on simple step stress with Type-I hybrid censored data. Mathematical Biosciences and Engineering, 2022, 19(10): 9773-9791. doi: 10.3934/mbe.2022455 |
[6] | Said G. Nassr, Amal S. Hassan, Rehab Alsultan, Ahmed R. El-Saeed . Acceptance sampling plans for the three-parameter inverted Topp–Leone model. Mathematical Biosciences and Engineering, 2022, 19(12): 13628-13659. doi: 10.3934/mbe.2022636 |
[7] | M. E. Bakr, Abdulhakim A. Al-Babtain, Zafar Mahmood, R. A. Aldallal, Saima Khan Khosa, M. M. Abd El-Raouf, Eslam Hussam, Ahmed M. Gemeay . Statistical modelling for a new family of generalized distributions with real data applications. Mathematical Biosciences and Engineering, 2022, 19(9): 8705-8740. doi: 10.3934/mbe.2022404 |
[8] | Amal S. Hassan, Najwan Alsadat, Christophe Chesneau, Ahmed W. Shawki . A novel weighted family of probability distributions with applications to world natural gas, oil, and gold reserves. Mathematical Biosciences and Engineering, 2023, 20(11): 19871-19911. doi: 10.3934/mbe.2023880 |
[9] | M. G. M. Ghazal, H. M. M. Radwan . A reduced distribution of the modified Weibull distribution and its applications to medical and engineering data. Mathematical Biosciences and Engineering, 2022, 19(12): 13193-13213. doi: 10.3934/mbe.2022617 |
[10] | Hatim Solayman Migdadi, Nesreen M. Al-Olaimat, Omar Meqdadi . Inference and optimal design for the k-level step-stress accelerated life test based on progressive Type-I interval censored power Rayleigh data. Mathematical Biosciences and Engineering, 2023, 20(12): 21407-21431. doi: 10.3934/mbe.2023947 |
Transparency about measurement errors in macroeconomic statistics is lacking. Inaccuracy is usually acknowledged only during extraordinary situations or under specific policy demands. Despite advances in technology and methodology, the overall accuracy has not improved due to economic changes and new complex activities. Even striking historical efforts did not change the persistence of substantial inaccuracies and biases. While the pioneers of national accounting addressed inaccuracies by using multiple accounting approaches and transparently reported error estimates, current statistical offices and other data producers rarely publish error measures, thereby creating an illusion of precision. Best practices and new measurement methods, such as satellite observation, Big Data, and Artificial Intelligence, promise improvements but face significant challenges without clear standards and an awareness of measurement error and bias. Regular and transparent reporting of measurement errors is and will be essential to improve the data reliability. Empowering data users—funding agencies, academics, and journalists—through error reporting and education can challenge the status quo.
In several lifetime tests, including, industrial, lifetime and clinical applications, progressive censoring is very useful. Progressive censoring permits the removal of the experimental units surviving until the test finishes. Let an experiment of experiment with n independent units in which it is not desirable to detect all failure times under the cost and time limitations, so only part of failures of the units are observed and the other part are removed from the experiment, such a sample is called a censored sample. Assume that one of the units was broken by accident after the test began, but before all of the units had burned out. If the experiment is still ongoing, this unit must be removed from the life test. The progressive censoring scheme gives a methodology for analyzing this type of data in this case. Some of the most important works on this subject are Balakrishnan and Aggarwala [1], Balakrishnan [2], and Cramer and Iliopoulos [3].
The experimentation time can be very long if the units are very reliable, which is a disadvantage of progressive Type-II censored schemes. Kundu and Joarder [4] and Childs et al. [5] address this problem by proposing a new type of censoring in which the stopping time of the experiment is minimum value of {Xm:m:n,T}, where the time T is fixed time before the start of the test. This type of censored sampling is called a progressive hybrid censoring sample (PHCS). The total time of the experiment under a PHCS will not exceed T. Several authors have studied PHCSs. See, for example, Panahi in [6], Alshenawy et al. in [7], Hemmati and Khorram in [8], and Lin and Huang in [9].
However, the weakness of a PHCS is that it cannot be implemented when a few failures can be detected before time T. For this reason, Cho et al. [10] proposed a general type of censoring, called a generalized Type-I PHCS, in which a smaller number of failures is predetermined. A lifetime test experiment would save the time and costs of failures using this censoring scheme. Moreover, the estimates of the statistical efficiency are improved by the experiment having more failures. In the following section, the generalized Type-I PHCS and its advantages are explained. For recent work on this topic, see, for example, Moihe El-Din et al. [11], Mohie El-Din et al. [12], and Nagy et al. [13].
The Weibull distribution is one of the most important in reliability and life testing, and it is widely utilized in various domains such as reliability theory and clinical trials. For this reason, we used this distribution to express truly real data. The Weibull distribution has the probability density (PD), cumulative distribution (CD), survival (S), and hazard (H) functions given as follows.
f(x;λ,μ)=λμxμ−1e−λxμ,x>0, | (1.1) |
F(x;λ,μ)=1−e−λxμ,x>0,λ>0,μ>0. | (1.2) |
S(x;λ,μ)=ˉF(x;λ,μ)=1−F(x;λ,μ), H(x;λ,μ)=λμxμ−1,x>0,λ>0,μ>0. | (1.3) |
For Bayesian inference on the Weibull distribution, see, for example, Mohie El-Din and Nagy [14], and Lin et al. in [15].
In this paper, we address the development of point and interval estimation and classical and Bayesian inference for the Weibull distribution based on the generalized Type-I PHCS. The Bayesian estimate for any parameter β, denoted by ˆβBS, in terms of the squared error loss function (SELF), is the expected value of the posterior distribution and given by
ˆβBS=Eβ|x_[β]. | (1.4) |
The LINEX loss function (LLF) can be expressed as follows.
LBL(ˆβ,β)=exp[υ(ˆβ−β)]−υ(ˆβ−β)−1, υ≠0, | (1.5) |
The Bayesian estimator of β, denoted by ˆβBL under the (LLF), the value ˆβBL that minimizes Eβ|X_[LBL(ˆβ,β)] is given by
ˆβBL=−1υln{Eβ|x_[exp(−υβ)]}, | (1.6) |
Calabria and Pulcini [16] considered the question of the choice of the value of parameter v.
The general entropy loss function (GELF) is another widely used asymmetric loss function. It is given by
LBE(ˆβ,β)∝(ˆββ)κ−κln(ˆββ)−1. | (1.7) |
The Bayesian estimate ˆβBE relative to the GE loss function is given by
ˆβBE={Eβ|x_[β]−κ}−1κ. | (1.8) |
The remainder of this article is organized as ollows. Section 2 summarizes the model of the generalized Type-I PHCS. Section 3 extracts the maximum likelihood estimates (ML) and the Bayesian estimates for the unknown parameters and SF and HF under three loss functions. Section 4 derives the Bayesian one-sample prediction for all censoring stage failure times of all withdrawn units. In Section 5, we derive the Bayesian prediction for all withdrawn units in the censoring stage {Ri,i=1,...,m}, which is called one-sample Bayesian prediction; and in Section 6, we derive the Bayesian prediction of an unobserved future progressive sample from the same distribution, which is called two-sample Bayesian prediction. In Section 7, simulation studies are conducted to compare the efficiency of the proposed inference techniques. In Section 8, a real-life data set is used to demonstrate the theoretical findings. Finally, the paper is concluded in Section 9.
Consider lifetime testing in which n equivalent units are tested. The generalized Type-I PHCS is as follows. Let T>0 and k,m∈{1,2,...,n} be prefixed integers in which k<m with the predetermined censoring scheme R=(R1,R2,...,Rm) satisfying n=m+R1+…+Rm. When the first failure occurs, R1 of the remaining units are randomly eliminated. When the second failure occurs R2, of the surviving units are eliminated from the experiment. This process repeats until the termination time T∗=max{Xk:m:n,min{Xm:m:n,T}} is reached, at which moment the reset surviving units are eliminated from the test. The "generalised Type-I PHCS" modifies the PHCS by allowing the experiment to continue beyond T if only a few failures are observed up to T. Ideally, the experimenters would like to observe m failures within this system, but they will observe at least k failures. D is the number of failures observed up to T (see Figure 1).
As mentioned earlier, one of observations from the following types is given under the generalized Type-I PHCS:
1. Suppose the kth failure time occurs after T. Then, experiment is terminated at Xk:m:n and the observations are {X1:m:n<...<Xk:m:n}.
2. Suppose that T is reached after the kth failure and before the mth failure. In this case, the termination time is T and we observe {X1:m:n<...<Xk:m:n<Xk+1:m:n<...<XD:m:n}.
3. Suppose that the mth fault was discovered after the kth failure and before T. Then, the termination time is Xm:m:n, and we will find {X1:m:n<...<Xk:m:n<Xk+1:m:n<...<Xm:m:n}.
The joint PDF based on the generalized Type-I PHCS for all cases is now given by:
fX_(x_)=[D∗∏i=1m∑j=i(R∗j+1)]D∗∏i=1f(xi:D∗:n)[ˉF(xi:D∗:n)]R∗i[ˉF(T)]R∗τ, | (2.1) |
where R∗j is the jth value of the vector R∗,
R∗={(R1,…,RD,0,...,0,R∗k=n−k−D∑j=1Rj),Case−I,(R1,…,RD),Case−II,(R1,…,Rm),Case−III, | (2.2) |
R∗τ is the number of units eliminated at time T, as determined by
R∗τ={0,Case−I,n−D−D∑j=1Rj,Case−II,0,Case−III, | (2.3) |
D∗={kCase−I,DCase−II,mCase−III, | (2.4) |
and
x_={(x1:m:n,...,xk:m:n),Case−I(x1:m:n,...,xD:m:n),Case−II,(x1:m:n,...,xm:m:n),Case−III. | (2.5) |
The likelihood function of λ,μ under the generalized Type-I PHCS can be derived using (1.1) and (1.2) in (2.1), as
L(λ,μ;x_)=[D∗∏i=1m∑j=i(R∗j+1)]λD∗μD∗D∗∏i=1xμ−1iexp[−λW(μ|x_)], | (2.6) |
where W(μ|x_)=D∗∑i=1(R∗i+1)xμi+R∗τTμ and xi=xi:D∗:n for simplicity of notation.
From Equation (2.6), the related log-likelihood function can be found as
lnL(λ,μ|x_)=const.+D∗(lnλ+lnμ)+(μ−1)D∗∑i=1ln(xi)−λW(μ|x_), | (3.1) |
equating the first derivatives of (3.1) with respect to μ and λ to zero, we obtain
∂lnL(λ,μ|x_)∂λ=D∗λ−W(μ|x_)=0, | (3.2) |
∂lnL(λ,μ|x_)∂μ=D∗μ+D∗∑i=1ln(xi)−λ[D∗∑i=1(R∗i+1)xμilnxi+R∗τTμlnT]=0. | (3.3) |
The ML estimators of lambdaand mu are then obtained by
ˆλML(μ)=D∗W(μ|x_), | (3.4) |
ˆμML=D∗ˆλML(μ)[D∗∑i=1(R∗i+1)xμilnxi+R∗τTμlnT]. | (3.5) |
By using the numerical technique with the Newton-Raphson iteration method, the ML estimates ˆλML and ˆμML can be obtained by solving (3.2) and (3.3), respectively. Due to the invariance property, the related ML estimations of the SF and HF are therefore given by
ˆSML(t)=exp(−ˆλMLtˆμML), | (3.6) |
ˆHML(t)=ˆλMLˆμMLtˆμML−1. | (3.7) |
The observed Fisher information matrix of parameters lambda and mu for large D∗, is given by
I(ˆλ,ˆμ)=[−∂2lnL(λ,μ|x_)∂λ2−∂2lnL(λ,μ|x_)∂λ∂μ−∂2lnL(λ,μ|x_)∂μ∂λ−∂2lnL(λ,μ|x_)∂μ2](ˆλML,ˆμML) | (3.8) |
where
∂2lnL(λ,μ|x_)∂λ2=−D∗λ2, |
∂2lnL(λ,μ|x_)∂μ2=−D∗μ2−D∗∑i=1[λ(R∗i+1)+1][(lnxi)2xμi(1+xμi)2], |
∂2lnL(λ,μ|x_)∂λ∂μ=−[D∗∑i=1(R∗i+1)xμilnxi(1+xμi)], |
and a 100(1−γ)% two-sided approximate confidence intervals for the parameters λ and μ are then
(ˆλ−zγ/2√V(ˆλ),ˆλ+zγ/2√V(ˆλ)), | (3.9) |
and
(ˆμ−zγ/2√V(ˆμ),ˆμ+zγ/2√V(ˆμ)), | (3.10) |
respectively, where V(ˆλ) and V(ˆμ)are the estimated variances of ˆλML and ˆμML, which are given by the first and the second diagonal element of I−1(ˆλ,ˆμ) and zγ/2 is the upper (γ/2) percentile of the standard normal distribution.
Greene [17] used the delta method to construct the approximate confidence intervals for the SF and HF as a function of the MLEs. This method is used in this subsection to determine the variance of the simpler linear function that can be utilized for inference from large samples, as well as the linear approximation of this function. See Greene [17] and Agresti [18].
G1=[∂S(t)∂λ∂S(t)∂μ]andG1=[∂H(t)∂λ∂H(t)∂μ] | (3.11) |
where
∂S(t)∂λ=−tμexp(−λtμ),∂S(t)∂μ=−λtμexp(−λtμ)ln(t), |
and
∂H(t)∂λ=μtμ−1,∂H(t)∂μ=λ[tμ−1+μtμ−1ln(t)]. |
The approximate estimates of V(ˆS(t)) and V(ˆH(t)) are then supplied, respectively, by
V(ˆS(t))≃[Gt1I−1(λ,μ)G1](ˆλML,ˆμML),V(ˆH(t))≃[Gt2I−1(λ,μ)G2](ˆλML,ˆμML), |
where Gti is the transpose of Gi, i=1,2. These results provide the approximate confidence intervals for S(t) and H(t) are
(ˆS(t)−zγ/2√V(ˆS(t)),ˆS(t)+zγ/2√V(ˆS(t))) | (3.12) |
and
(ˆH(t)−zγ/2√V(ˆH(t)),ˆH(t)+zγ/2√V(ˆH(t))). | (3.13) |
Assuming that both λ and μ are unknown parameters, a natural choice for the prior distributions of λ and μ is to assume that they are independent gamma distributions G(a1,b1) and G(a2,b2), respectively. As a result, the following is the joint prior distribution.
π(λ,μ) ∝ λa1−1exp(−λb1)μa2−1exp(−b2μ), | (4.1) |
a1, b1, a2, b2 are positive constants. If hyperparameters a1, b1, a2, b2 are set as zero, then the informative priors are reduced to the noninformative priors.
Upon combining (2.6) and (4.1), given the generalized Type-I PHCS, the posterior density function of λ,μ is obtained as
π∗(λ,μ|x_)=L(λ,μ|x_)π(λ,μ)/∫L(λ,μ|x_)π(λ,μ)dλdμ=I−1λD∗+a1−1μD∗+a2−1exp(−b2μ)(D∗∏i=1xμ−1i)exp{−λ[W(μ|x_)+b1]}, | (4.2) |
where
I=∞∫0∞∫0λD∗+a1−1μD∗+a2−1exp(−b2μ)(D∗∏i=1xμ−1i)exp{−λ[W(μ|x_)+b1]}dλdμ=Γ(D∗+a1)∞∫0μD∗+a2−1(D∗∏i=1xμ−1i)exp(−b2μ)[W(μ|x_)+b1]−(D∗+a1)dμ. | (4.3) |
Thus, from (1.4), the Bayesian estimates of λ and μ under the SELF are as follows.
ˆλBS=I−1Γ(D∗+a1+1)∞∫0μD∗+a2−1(D∗∏i=1xμ−1i)×exp(−b2μ)[W(μ|x_)+b1]−(D∗+a1+1)dμ, | (4.4) |
ˆμBS=I−1Γ(D∗+a1)∞∫0μD∗+a2(D∗∏i=1xμ−1i)×exp(−b2μ)[W(μ|x_)+b1]−(D∗+a1)dμ. | (4.5) |
From (1.6), we obtain the Bayesian estimator of λ and μ under the LLF,
ˆλBL=−1υln{I−1Γ(D∗+a1)∞∫0μD∗+a2−1(D∗∏i=1xμ−1i)×exp(−b2μ)[W(μ|x_)+υ+b1]−(D∗+a1)dμ}, | (4.6) |
ˆμBL=−1υln{I−1Γ(D∗+a1)∞∫0μD∗+a2−1(D∗∏i=1xμ−1i)×exp[−μ(b2+υ)][W(μ|x_)+b1]−(D∗+a1)dμ}. | (4.7) |
From (1.8), one obtains the Bayesian estimator of λ and μ under the GELF as follows:
ˆλBE={I−1Γ(D∗+a1−κ)∞∫0μD∗+a2−1(D∗∏i=1xμ−1i)×exp(−b2μ)[W(μ|x_)+b1]−(D∗+a1−κ)dμ}−1κ, | (4.8) |
ˆμBE={I−1Γ(D∗+a1)∞∫0μD∗+a2−κ−1(D∗∏i=1xμ−1i)×exp(−μb2)[W(μ|x_)+b1]−(D∗+a1)dμ}−1κ. | (4.9) |
Since the integrals in (4.4), (4.5), (4.6), (4.7), (4.8), and (4.9) cannot be computed analytically, the Markov chain Monte Carlo method (MCMC) is used to evaluate these integrals. Depending on the posterior distribution in (4.2), the conditional posterior distributions π∗1(λ|μ;x_) and π∗2(μ|λ;x_) of parameters λ and μ can now be computed and written as follows.
π∗1(λ|μ;x_)=[W(μ|x_)+b1]Γ(D∗+a1)λD∗+a1−1exp{−λ[W(μ|x_)+b1]} | (4.10) |
and
π∗2(μ|λ;x_)=I−1Γ(D∗+a1)μD∗+a2−1exp(−b2μ)(D∗∏i=1xμ−1i)[W(μ|x_)+b1]−(D∗+a1). | (4.11) |
It is clear that, the posterior density function π∗1(λ|μ;x_) is a gamma density, therefore, samples of λ can be easily generated. However, the posterior density function π∗2(μ|λ;x_) is not a specific distribution; therefore, it is not possible to generate samples directly by standard methods. From theorem 2 of Kundu [19], π∗2(μ|λ;x_) is a log-concave function; therefore, to generate random samples from these distributions, we use the Metropolis-Hastings [20]. The MCMC algorithm can be described as follows.
Algorithm 1 MCMC method. |
Step 1, start with λ(0)=ˆλML and μ(0)=ˆμML |
Step 2, set i=1 |
Step 3, Generate λ(i)∼GammaDist.[D∗+a,W(μ(i−1)|x_)+b1]=π∗1(λ|μ(i−1);x_) |
Step 4, Generate a proposal μ(∗) from N(μ(i−1),V(μ)) |
Step 5, Calculate the acceptance probabilities dμ=min[1,π∗2(μ(∗)|λ(i−1))π∗1(μ(i−1)|λ(i−1))] |
Step 6, Generate u1 that follows a U(0,1) distribution. If u1≤dμ, set μ(i)=μ(∗); otherwise, set μ(i)=μ(i−1) |
Step 7, set i=i+1, repeat steps 3 to 7, N times and obtain (λ(j),μ(j)), j=1,2,...,N. |
Step 8, Remove the first B values for λ and μ, which is the burn-in period of λ(j) and μ(j), respectively, where j=1,2,...,N−B. |
Assuming g(λ,μ) is an arbitrary function in λ and μ, the Bayesian estimates of g are obtained using the MCMC values as follows.
Based on SELF, LLF, and GELF, the Bayesian estimates of g are then, respectively, given by
^g(λ,μ)BS=1N−BN−B∑i=1g(λ(i),μ(i)), | (4.12) |
^g(λ,μ)BL=−1υLn[1N−BN−B∑i=1eυg(λ(i),μ(i))], | (4.13) |
^g(λ,μ)BE=[1N−BN−B∑i=1[g(λ(i),μ(i))]−κ]−1/κ, | (4.14) |
The 100(1−γ)% Bayesian confidence interval or credible interval (L,U) for parameter β (β is λ or μ) if
U∫Lπ∗(β|x_)dβ=1−γ, | (4.15) |
Since the integration in (4.15) cannot be solved analytically, the 100(1−γ) MCMC-approximated credibility intervals for λ and μ using the (N−B) using the (N - B) generated values after sorting in ascending order, (λ(1),λ(2),...,λ(N−B)) and (μ(1),μ(2),...,μ(N−B)), are given as follows,
(λ[(N−B)γ/2],λ[(N−B)(1−γ)/2])(μ[(N−B)γ/2],μ[(N−B)(1−γ)/2]) |
The absolute difference between the upper and lower bounds determines the length of the credible intervals.
For ρ=1,2,...,R∗j, let Zρ:R∗j denote the ρth order statistic out of R∗j removed units at stage j. Then, the conditional DF of Zρ:R∗j, given the observed generalized Type-I PHCS, is given, as in Basak et al.[21], by
g(Zρ:R∗j|x_)=g(z|x_)=R∗j!(ρ−1)!(R∗j−ρ)![G(z)−G(zj)]ρ−1[1−G(z)]R∗j−ρg(z)[1−G(zj)]R∗j, z>zj, | (5.1) |
where
j={1,...,kifT<Xk:m:n<Xm:m:n,1,...,D,τifXk:m:n<T<Xm:m:n,1,...,mifXk:m:n<Xm:m:n<T, |
with zτ=T.
By using (1.1) and (1.2) in (5.1), given a generalized Type-I PHCS, the conditional DF of Zρ:R∗j is then given as follows:
g(z|x_)=ρ−1∑q=0Cqλμxμ−1exp{−λ[ϖq(zμ−zμj)]}, z>zj, | (5.2) |
where Cq=(−1)q(ρ−1q)R∗j!(ρ−1)!(R∗j−ρ)! and ϖq=q+R∗j−ρ+1 for q=0,...,ρ−1.
Upon combining (4.2) and (5.2) and using the MCMC technique, the Bayesian predictive DF of Zρ:R∗j, given a generalized Type-I PHCS, is obtained as
g∗(z|x_)=∞∫0∞∫0g(z|x_)π∗(λ,μ|x_)dλdμ=1N−BN−B∑i=1ρ−1∑q=0Cqλ(i)μ(i)zμ(i)−1exp{−λ(i)[ϖq(zμ(i)−zμ(i)j)]}. | (5.3) |
The Bayesian predictive SF of Zρ:R∗j, given generalized Type-I PHCS, is given as
G∗(t|x_)=∞∫tg∗(z|x_)dx=1N−BN−B∑i=1ρ−1∑q=0Cqϖqexp{−λ(i)[ϖq(tμ(i)−zμ(i)j)]}. | (5.4) |
The Bayesian point predictor of Zρ:R∗j under the SELF is the mean of the predictive DF, given by
ˆZρ:R∗j=∞∫0zg∗(z|x_)dx, |
Let W1:ℓ:N≤W2:ℓ:N≤…≤Wℓ:ℓ:N be a future independent progressive Type-II censored sample from the same population with censoring scheme S=(S1,...,Sℓ). In this section, we develop a general procedure for deriving the point and interval predictions for Ws:ℓ:N, 1≤s≤ℓ, based on the observed generalized Type-I PHCS. The marginal DF of Ws:ℓ:N is given by Balakrishnan et al. [22] as
gWs:ℓ:N(ws|λ)=g(ws|λ)=c(N,s)s−1∑q=0cq,s−1[1−G(ws)]Mq,s−1g(ws), | (6.1) |
where 1≤s≤ρ, c(N,s)=N(N−S1−1)...(N−S1...−Ss−1+1),Mq,s=N−S1−...−Ss−q−1−s+q+1,and cq,s−1=(−1)q{[q∏u=1s−q+u−1∑υ=s−q(Sυ+1)][s−q−1∏u=1s−q−1∑υ=u(Sυ+1)]}−1.
Upon substituting (1.1) and (1.2) in (6.1), the marginal DF of Ws:ℓ:N is then obtained as
g(ws|λ)=c(N,s)s−1∑q=0cq,s−1λμyμ−1sexp{−λ[Mq,swμs]}, ws>0. | (6.2) |
Upon combining (4.2)and (6.2) and using the MCMC method, given a generalized Type-I PHCS, the Bayesian predictive DF of Ws:ℓ:N is obtained as
g∗(ws|x_)=∞∫0∞∫0g(ws|x_)π∗(λ,μ|x_)dλdμ=c(N,s)N−BN−B∑i=1s−1∑q=0cq,s−1λ(i)μ(i)wμ(i)−1sexp{−λ(i)[Mq,swμ(i)s]}. | (6.3) |
From (6.3), we simply obtain the predictive SF function of Ws:ℓ:N, given a generalized Type-I PHCS, as
G∗(t|x_)=∞∫tg∗(ws|x_)dys=c(N,s)N−BN−B∑i=1s−1∑q=0cq,s−1Mq,sexp{−λ(i)[Mq,stμ(i)]}. | (6.4) |
The Bayesian point predictor of Ws:ℓ:N, 1≤s≤m, under the SELF is the mean of the predictive DF, given by
ˆWs:ℓ:N=∞∫0wsg∗(ws|x_)dys, | (6.5) |
where g∗Ws:ℓ:N(ws|x_) is given as in (6.3).
By solving the following two equations, the Bayesian predictive bounds of the 100(1−γ)% equi-tailed (ET)interval for Zρ:R∗j and Ws:ℓ:N, 1≤s≤m can be obtained respectively,
G∗(LET|x_)=γ2andG∗(UET|x_)=1−γ2, | (6.6) |
where G∗(t|x_) is given as in (5.4) and (6.4), where LET and UET denote the lower and upper bounds, respectively. Furthermore, for the highest posterior density (HPD) method, the following two equations need to be solved:
G∗(LHPD|x_)−G∗(UHPD|x_)=1−γ, |
and
g∗(LHPD|x_)−g∗(UHPD|x_)=0, |
where g∗(z|x_) is as in (5.3) and (6.3), where LHPD and UHPD denote the HPD lower and upper bounds, respectively.
In this section, a Monte Carlo simulation study was conducted to compare the efficiency of ML and Bayesian estimates. Using different values of n,m,k and T, 5000 generalized Type-I PHCSs were generated from the Weibull distribution (with λ=1 and μ=2). The values of T are chosen such that the three cases of generalized Type-I PHCS occur. Thus, in the first case, a T that lies in the first quarter of the data such that T∗=Xk:m:n is chosen. In the second case, a T that lies in the third quarter such that T∗=T is chosen. Finally, a T that is sufficiently large such that T∗=Xm:m:n is chosen. We computed the ML estimate and the Bayesian estimates of λ, μ, S(t), and H(t) (with t=0.5) under the SELF, LLF (with υ = 0.5) and GELF (with κ = 0.5) using IP and NIP. We also calculated the mean squared error (MSE) and the expected bias (EB) for each estimate.
The 90% and 95% asymptotic and Bayesian credible confidence intervals with the average length (AL) and the estimated coverage probabilities (CPs) for ˆλ, ˆμ, ^S(t), and ^H(t) are computed.
Different samples of size (n) with different effective sample sizes (m,k) are used to conduct the simulation study. The process of removing the SF units is performed with these censoring schemes.
1. Scheme 1: Ri=2(n−m)m for odd integers i and Ri=0 for even integers of i.
2. Scheme 2: Ri=2(n−m)m for even integers i and Ri=0 for add integers of i..
3. Scheme 3: Ri=0 for i=1,2,...,m−1, Ri=n−m for i=m.
All these cases have been assumed according to the case of generalized Type-I progressive censoring and all Bayesian results are computed based on two different choices for the hyperparameters (a1,b1,a2,b2).
1. For the case of IP:a1=200, b1=200, a2=200 and b2=400 (by putting the marginal prior distribution of λ with mean a1b1=1 and small variance a1b21=0.005 and the marginal prior distribution of μ with mean a2b2=1 and variance a2b22=0.005).
2. For the case of NIP:a1=b1=a2=b2=0.
The simulated results are displayed in the Appendix of this paper.
To illustrate all conclusions reached for the Weibull distribution, we used a real data consists of 19 values. These data refer to breakthrough times of an offending liquid between electrodes at a voltage of 34 kilovolts, as prepared by Viveros and Balakrishnan in [23] from Table 6.1 of Nelson ([24], p.228). We will use these real data to consider the following progressively censored schemes.
Suppose m=10, R=(0,0,3,0,0,3,0,0,3,0), Then, we have the following progressive data: 0.19, 0.78, 0.96, 2.78, 3.16, 4.15, 4.85, 7.35, 8.01, and 31.75. If we consider a different T, then we have three different generalized Type-I PHCSs.
1. Scheme I: Suppose T=4. Since T<X7:10:19<X10:10:19, then the experiment would have terminated at X7:7:19, with R∗=(0,0,3,0,0,0,9) and R∗τ=0 and we would have the following data: 0.19, 0.78, 0.96, 2.78, 3.16, 4.15, and 4.67.
2. Scheme II: Suppose T=7.5. Since X7:10:19<T<X10:10:19, then the experiment would have terminated at T=8, with R∗ = (0, 0, 3, 0, 0, 3, 0, 0) and R∗τ=5 and we would have the following data: 0.19, 0.78, 0.96, 2.78, 3.16, 4.15, 4.85, and 7.35.
3. Scheme III: Suppose k=7 and T=35. Since X7:10:19<X10:10:19<T, then the experiment would have terminated at X10:10:19, with R∗=R and R∗τ=0 and we would have the following data: 0.19, 0.78, 0.96, 2.78, 3.16, 4.15, 4.85, 7.35, 8.01, and 31.75.
Based on the generated generalized Type-I PHCS and two different choices of hyperparameters (a1,b1,a2,b2) as in the Monte Carlo simulation, Table 1 shows the point predictor and 95% Bayesian prediction bounds of Zρ:R∗k for three different censoring schemes, and Table 2 shows the point predictor and 95% Bayesian prediction bounds of Ws:ℓ:N from the future progressively censored sample of size ℓ=10 from a sample of size N=20 with progressive censoring scheme S=(0,0,3,0,0,3,0,0,3,1) for the previous four censoring schemes.
IP | NIP | |||||||
Sch. | j | ρ | ˆXρ:R∗j | ET interval | HPD interval | ˆXρ:R∗j | ET interval | HPD interval |
1 | 3 | 1 | 4.824 | (1.322, 21.783) | (1.214, 17.062) | 6.410 | (1.324, 23.275) | (1.214, 18.034) |
2 | 10.634 | (2.417, 42.868) | (1.319, 34.499) | 14.202 | (2.429, 46.302) | (1.308, 36.810) | ||
3 | 22.254 | (5.271, 86.933) | (2.348, 70.530) | 29.787 | (5.289, 94.280) | (2.274, 75.524) | ||
7 | 1 | 5.914 | (5.943, 12.764) | (5.908, 11.190) | 7.639 | (5.944, 13.261) | (5.908, 11.514) | |
2 | 7.367 | (6.254, 17.586) | (5.939, 15.267) | 9.587 | (6.258, 18.558) | (5.935, 15.923) | ||
3 | 9.027 | (6.817, 22.790) | (6.182, 19.570) | 11.814 | (6.821, 24.302) | (6.071, 20.612) | ||
4 | 10.964 | (7.581, 28.762) | (6.654, 24.889) | 14.411 | (7.581, 30.909) | (6.608, 26.363) | ||
5 | 13.288 | (8.553, 35.920) | (7.294, 31.039) | 17.528 | (8.544, 38.832) | (7.213, 33.049) | ||
6 | 16.192 | (9.782, 44.951) | (8.125, 38.766) | 21.424 | (9.761, 48.820) | (8.000, 41.448) | ||
7 | 20.066 | (11.390, 57.239) | (9.351, 48.369) | 26.619 | (11.351, 62.390) | (9.026, 52.794) | ||
8 | 25.877 | (13.657, 76.426) | (10.679, 65.357) | 34.412 | (13.592, 83.499) | (10.421, 70.278) | ||
9 | 37.497 | (17.494,118.537) | (12.895, 99.972) | 49.997 | (17.400,129.445) | (12.532,107.555) | ||
2 | 3 | 1 | 4.924 | (1.330, 21.776) | (1.214, 17.251) | 6.488 | (1.332, 22.842) | (1.214, 17.983) |
2 | 10.886 | (2.506, 42.386) | (1.343, 34.584) | 14.399 | (2.526, 44.762) | (1.337, 36.266) | ||
3 | 22.809 | (5.601, 85.629) | (5.198, 69.693) | 30.221 | (5.656, 90.660) | (5.227, 73.313) | ||
6 | 1 | 8.082 | (5.365, 25.811) | (5.250, 21.286) | 10.524 | (5.367, 26.877) | (5.250, 22.019) | |
2 | 14.044 | (6.541, 46.422) | (5.379, 38.619) | 18.435 | (6.562, 48.797) | (5.372, 40.302) | ||
3 | 25.967 | (9.637, 89.664) | (9.233, 73.728) | 34.256 | (9.691, 94.695) | (9.262, 77.348) | ||
9 | 1 | 10.305 | (10.188, 22.456) | (10.120, 19.742) | 13.284 | (10.191, 23.096) | (10.120, 20.181) | |
2 | 13.285 | (10.826, 32.161) | (10.192, 28.030) | 17.239 | (10.837, 33.440) | (10.190, 28.937) | ||
3 | 17.260 | (12.126, 44.641) | (12.105, 38.397) | 22.513 | (12.152, 46.768) | (10.856, 39.936) | ||
4 | 23.220 | (14.248, 63.813) | (12.029, 55.213) | 30.425 | (14.288, 67.225) | (11.978, 57.679) | ||
5 | 35.144 | (18.060,105.916) | (14.149, 90.288) | 46.246 | (18.126,111.946) | (14.055, 94.654) | ||
3 | 3 | 1 | 5.061 | (1.335, 22.283) | (1.214, 17.716) | 6.661 | (1.337, 23.291) | (1.214, 18.425) |
2 | 11.226 | (2.572, 43.235) | (1.356, 35.439) | 14.832 | (2.597, 45.441) | (1.351, 37.039) | ||
3 | 23.556 | (5.834, 87.257) | (2.664, 72.209) | 31.172 | (5.910, 91.905) | (2.639, 75.613) | ||
6 | 1 | 8.219 | (5.370, 26.318) | (5.250, 21.752) | 10.697 | (5.372, 27.327) | (5.250, 22.460) | |
2 | 14.384 | (6.607, 47.271) | (5.391, 39.474) | 18.867 | (6.632, 49.477) | (5.386, 41.075) | ||
3 | 26.714 | (9.870, 91.293) | (6.612, 75.361) | 35.207 | (9.945, 95.940) | (6.674, 79.648) | ||
9 | 1 | 26.714 | (9.870, 91.293) | (9.142, 75.361) | 15.580 | (10.255, 32.209) | (10.133, 27.343) | |
2 | 18.205 | (11.490, 52.153) | (10.274, 44.357) | 23.750 | (11.515, 54.360) | (10.269, 45.957) | ||
3 | 30.536 | (14.752, 96.175) | (11.495, 80.244) | 40.090 | (14.828,100.823) | (11.514, 83.663) |
IP | NIP | ||||||
Sch. | s | ˆYs:N | ET interval | HPD interval | ˆYs:N | ET interval | HPD interval |
1 | 1 | 0.704 | (0.016, 2.927) | (0.000, 2.255) | 0.739 | (0.016, 3.139) | (0.000, 2.393) |
2 | 0.972 | (0.143, 4.811) | (0.013, 3.858) | 1.014 | (0.144, 5.212) | (0.012, 4.127) | |
3 | 1.314 | (0.361, 6.671) | (0.114, 5.470) | 1.381 | (0.362, 7.270) | (0.106, 5.878) | |
4 | 1.760 | (0.668, 9.119) | (0.299, 7.574) | 1.861 | (0.668, 9.976) | (0.281, 8.162) | |
5 | 2.216 | (1.036, 11.675) | (0.545, 9.782) | 2.356 | (1.032, 12.810) | (0.514, 10.566) | |
6 | 2.696 | (1.457, 14.399) | (0.842, 12.142) | 2.878 | (1.448, 15.838) | (0.794, 13.139) | |
7 | 3.481 | (2.039, 18.751) | (1.237, 15.844) | 3.724 | (2.023, 20.644) | (1.169, 17.159) | |
8 | 4.352 | (2.726, 23.618) | (1.717, 20.008) | 4.666 | (2.702, 26.033) | (1.622, 21.689) | |
9 | 5.356 | (3.544, 29.252) | (2.293, 24.833) | 5.753 | (3.509, 32.275) | (2.167, 26.942) | |
10 | 9.350 | (5.264, 50.149) | (3.233, 41.790) | 9.952 | (5.218, 54.977) | (3.068, 45.151) | |
2 | 1 | 0.722 | (0.017, 2.926) | (0.000, 2.282) | 0.750 | (0.017, 3.077) | (0.000, 2.386) |
2 | 0.978 | (0.154, 4.751) | (0.016, 3.865) | 1.060 | (0.156, 5.028) | (0.016, 4.061) | |
3 | 1.308 | (0.391, 6.536) | (0.134, 5.450) | 1.423 | (0.396, 6.943) | (0.131, 5.742) | |
4 | 1.738 | (0.727, 8.892) | (0.350, 7.520) | 1.898 | (0.734, 9.468) | (0.341, 7.938) | |
5 | 2.172 | (1.132, 11.338) | (0.638, 9.684) | 2.382 | (1.140, 12.097) | (0.622, 10.237) | |
6 | 2.627 | (1.596, 13.939) | (0.984, 11.990) | 2.890 | (1.606, 14.898) | (0.959, 12.690) | |
7 | 3.380 | (2.238, 18.128) | (1.444, 15.628) | 3.726 | (2.249, 19.387) | (1.408, 16.549) | |
8 | 4.213 | (3.000, 22.800) | (2.003, 19.709) | 4.650 | (3.011, 24.402) | (1.954, 20.885) | |
9 | 5.168 | (3.905, 28.199) | (2.675, 24.436) | 5.714 | (3.916, 30.202) | (2.608, 25.909) | |
10 | 9.146 | (5.795, 48.785) | (3.750, 41.359) | 10.042 | (5.814, 52.007) | (3.667, 43.723) | |
3 | 1 | 0.748 | (0.017, 2.998) | (0.000, 2.348) | 0.775 | (0.018, 3.142) | (0.000, 2.449) |
2 | 1.042 | (0.162, 4.847) | (0.018, 3.964) | 1.051 | (0.164, 5.104) | (0.017, 4.150) | |
3 | 1.386 | (0.412, 6.650) | (0.146, 5.579) | 1.405 | (0.419, 7.024) | (0.144, 5.854) | |
4 | 1.836 | (0.768, 9.030) | (0.380, 7.686) | 1.867 | (0.779, 9.557) | (0.374, 8.077) | |
5 | 2.288 | (1.196, 11.496) | (0.691, 9.887) | 2.335 | (1.211, 12.187) | (0.680, 10.403) | |
6 | 2.761 | (1.690, 14.117) | (1.066, 12.229) | 2.825 | (1.708, 14.987) | (1.050, 12.881) | |
7 | 3.551 | (2.371, 18.349) | (1.564, 15.931) | 3.637 | (2.394, 19.492) | (1.541, 16.788) | |
8 | 4.418 | (3.181, 23.064) | (2.170, 20.083) | 4.534 | (3.209, 24.515) | (2.137, 21.175) | |
9 | 5.414 | (4.142, 28.510) | (2.897, 24.888) | 5.563 | (4.176, 30.322) | (2.855, 26.255) | |
10 | 9.635 | (6.145, 49.504) | (4.051, 42.221) | 9.839 | (6.198, 52.438) | (4.002, 44.426) |
The Bayesian and ML estimates of the unknown parameters and the SF and HF of the Weibull distribution when the observed sample is a generalized Type-I PHCS sample are obtained. In the Bayesian approach, the SELF, LLF and GELF based on IP and NIP distributions are considered. The 90% and 95% asymptotic and credible confidence intervals for the parameters and for the SF and HF are also constructed. The Bayesian point and interval predictions of future order statistics samples from the same population for a progressive Type-II of an unpredictable future sample were also developed. From the numerical results, we derive the following conclusions:
1. From Tables 1–2, the HPD prediction intervals appear to be more accurate than the ET prediction intervals, and the means of the Bayesian point predictor inside the Bayesian prediction intervals.
2. From Tables 3–6 in the appendix, the Bayesian estimates using the IP are better than the MLEs. Furthermore, the results of the ML estimates are similar to the Bayesian estimators with NIP. Thus, when we have no prior knowledge of the unknown parameters, it is often easier to use the ML instead of the Bayesian estimators, since the computation of the Bayesian estimator is more complicated. Moreover, in most cases, the MSE decreases as n and m increase.
Bayesian | |||||||||
{ˆλBS | {ˆλBL | {ˆλBE | |||||||
Sch. | T | (n,m,k) | ˆλML | IP | NIP | IP | NIP | IP | NIP |
MSE | |||||||||
Sch−I | T=0.3 | (30, 20, 15) | 0.5082 | 0.0244 | 0.5305 | 0.0239 | 0.3282 | 0.0243 | 0.3739 |
(40, 20, 15) | 0.5186 | 0.0192 | 0.5693 | 0.0187 | 0.3517 | 0.0190 | 0.4026 | ||
(60, 30, 20) | 0.4127 | 0.0173 | 0.4355 | 0.0170 | 0.2675 | 0.0171 | 0.3403 | ||
T=0.7 | (30, 20, 15) | 0.2879 | 0.0259 | 0.2666 | 0.0252 | 0.2114 | 0.0255 | 0.2243 | |
(40, 20, 15) | 0.6400 | 0.0203 | 0.6240 | 0.0199 | 0.3760 | 0.0202 | 0.4454 | ||
(60, 30, 20) | 0.2110 | 0.0172 | 0.2007 | 0.0170 | 0.1646 | 0.0172 | 0.1708 | ||
T=1.5 | (30, 20, 15) | 0.2843 | 0.0250 | 0.2671 | 0.0242 | 0.2085 | 0.0245 | 0.2198 | |
(40, 20, 15) | 0.5891 | 0.0226 | 0.5973 | 0.0222 | 0.3726 | 0.0225 | 0.4423 | ||
(60, 30, 20) | 0.2528 | 0.0175 | 0.2440 | 0.0171 | 0.1921 | 0.0172 | 0.2036 | ||
Sch−II | T=0.3 | (30, 20, 15) | 0.5166 | 0.0252 | 0.5284 | 0.0245 | 0.3486 | 0.0250 | 0.3869 |
(40, 20, 15) | 0.5489 | 0.0197 | 0.5772 | 0.0194 | 0.3644 | 0.0197 | 0.4159 | ||
(60, 30, 20) | 0.3080 | 0.0174 | 0.3002 | 0.0172 | 0.2285 | 0.0174 | 0.2459 | ||
T=0.7 | (30, 20, 15) | 0.3489 | 0.0255 | 0.3314 | 0.0247 | 0.2473 | 0.0250 | 0.2673 | |
(40, 20, 15) | 0.5221 | 0.0191 | 0.5308 | 0.0187 | 0.3333 | 0.0190 | 0.3778 | ||
(60, 30, 20) | 0.2269 | 0.0164 | 0.2135 | 0.0160 | 0.1734 | 0.0162 | 0.1794 | ||
T=1.5 | (30, 20, 15) | 0.3369 | 0.0265 | 0.3188 | 0.0256 | 0.2451 | 0.0259 | 0.2584 | |
(40, 20, 15) | 0.6190 | 0.0205 | 0.6676 | 0.0198 | 0.3925 | 0.0200 | 0.4631 | ||
(60, 30, 20) | 0.2130 | 0.0177 | 0.2087 | 0.0173 | 0.1658 | 0.0174 | 0.1737 | ||
Sch−III | T=0.3 | (30, 20, 15) | 0.5166 | 0.0252 | 0.5284 | 0.0245 | 0.3486 | 0.0250 | 0.3869 |
(40, 20, 15) | 1.4205 | 0.0173 | 2.3081 | 0.0169 | 0.7138 | 0.0171 | 1.1274 | ||
(60, 30, 20) | 0.3416 | 0.0162 | 0.3652 | 0.0159 | 0.2586 | 0.0161 | 0.2772 | ||
T=0.7 | (30, 20, 15) | 0.5049 | 0.0246 | 0.5692 | 0.0238 | 0.3290 | 0.0241 | 0.4095 | |
(40, 20, 15) | 1.2471 | 0.0183 | 1.7174 | 0.0179 | 0.6258 | 0.0181 | 0.9441 | ||
(60, 30, 20) | 0.3569 | 0.0152 | 0.3705 | 0.0149 | 0.2577 | 0.0151 | 0.2792 | ||
T=1.5 | (30, 20, 15) | 0.4781 | 0.0246 | 0.5283 | 0.0238 | 0.3279 | 0.0241 | 0.3805 | |
(40, 20, 15) | 1.4825 | 0.0182 | 2.0789 | 0.0179 | 0.6943 | 0.0181 | 1.0823 | ||
(60, 30, 20) | 0.3832 | 0.0164 | 0.4044 | 0.0161 | 0.2737 | 0.0163 | 0.3012 | ||
EB | |||||||||
Sch−I | T=0.3 | (30, 20, 15) | 0.1962 | 0.0036 | 0.1983 | 0.0069 | 0.1024 | 0.0121 | 0.0855 |
(40, 20, 15) | 0.1816 | 0.0052 | 0.1950 | 0.0036 | 0.0900 | 0.0079 | 0.0715 | ||
(60, 30, 20) | 0.1219 | 0.0057 | 0.1268 | 0.0019 | 0.0649 | 0.0057 | 0.0502 | ||
T=0.7 | (30, 20, 15) | 0.1114 | 0.0075 | 0.0936 | 0.0029 | 0.0436 | 0.0080 | 0.0274 | |
(40, 20, 15) | 0.2209 | 0.0041 | 0.2048 | 0.0046 | 0.1182 | 0.0089 | 0.1086 | ||
(60, 30, 20) | 0.0984 | 0.0019 | 0.0884 | 0.0054 | 0.0519 | 0.0090 | 0.0403 | ||
T=1.5 | (30, 20, 15) | 0.1340 | 0.0092 | 0.1151 | 0.0012 | 0.0662 | 0.0063 | 0.0516 | |
(40, 20, 15) | 0.1950 | 0.0010 | 0.1840 | 0.0077 | 0.1037 | 0.0119 | 0.0935 | ||
(60, 30, 20) | 0.1235 | 0.0052 | 0.1125 | 0.0021 | 0.0748 | 0.0058 | 0.0647 | ||
Sch−II | T=0.3 | (30, 20, 15) | 0.2021 | 0.0034 | 0.2015 | 0.0070 | 0.1070 | 0.0122 | 0.0894 |
(40, 20, 15) | 0.1772 | 0.0006 | 0.1840 | 0.0079 | 0.0827 | 0.0122 | 0.0649 | ||
(60, 30, 20) | 0.1107 | 0.0002 | 0.1118 | 0.0072 | 0.0542 | 0.0109 | 0.0379 | ||
T=0.7 | (30, 20, 15) | 0.1516 | 0.0109 | 0.1333 | 0.0007 | 0.0785 | 0.0044 | 0.0645 | |
(40, 20, 15) | 0.2083 | 0.0036 | 0.2028 | 0.0049 | 0.1182 | 0.0091 | 0.1067 | ||
(60, 30, 20) | 0.1205 | 0.0051 | 0.1060 | 0.0021 | 0.0684 | 0.0057 | 0.0573 | ||
T=1.5 | (30, 20, 15) | 0.1597 | 0.0103 | 0.1411 | 0.0001 | 0.0889 | 0.0051 | 0.0757 | |
(40, 20, 15) | 0.2560 | 0.0116 | 0.2477 | 0.0030 | 0.1533 | 0.0012 | 0.1453 | ||
(60, 30, 20) | 0.1101 | 0.0089 | 0.1001 | 0.0016 | 0.0636 | 0.0020 | 0.0529 | ||
Sch−III | T=0.3 | (30, 20, 15) | 0.1928 | 0.0034 | 0.2015 | 0.0070 | 0.1070 | 0.0122 | 0.0894 |
(40, 20, 15) | 0.3861 | 0.0032 | 0.4732 | 0.0048 | 0.2402 | 0.0088 | 0.2642 | ||
(60, 30, 20) | 0.1597 | 0.0022 | 0.1710 | 0.0046 | 0.1106 | 0.0081 | 0.1002 | ||
T=0.7 | (30, 20, 15) | 0.1877 | 0.0107 | 0.1846 | 0.0008 | 0.1130 | 0.0040 | 0.1052 | |
(40, 20, 15) | 0.3373 | 0.0014 | 0.4115 | 0.0066 | 0.2144 | 0.0106 | 0.2268 | ||
(60, 30, 20) | 0.1610 | 0.0039 | 0.1703 | 0.0030 | 0.1106 | 0.0064 | 0.1009 | ||
T=1.5 | (30, 20, 15) | 0.1982 | 0.0107 | 0.1950 | 0.0007 | 0.1223 | 0.0041 | 0.1140 | |
(40, 20, 15) | 0.3659 | 0.0018 | 0.4368 | 0.0062 | 0.2275 | 0.0103 | 0.2443 | ||
(60, 30, 20) | 0.1717 | 0.0001 | 0.1788 | 0.0068 | 0.1167 | 0.0103 | 0.1076 |
Bayesian | |||||||||
ˆμBS | ˆμBL | ˆμBE | |||||||
Sch. | T | (n,m,k) | ˆμML | IP | NIP | IP | NIP | IP | NIP |
MSE | |||||||||
Sch−I | T=0.3 | (30, 20, 15) | 0.0410 | 0.0066 | 0.0361 | 0.0065 | 0.0337 | 0.0064 | 0.0320 |
(40, 20, 15) | 0.0307 | 0.0051 | 0.0270 | 0.0051 | 0.0257 | 0.0050 | 0.0250 | ||
(60, 30, 20) | 0.0236 | 0.0046 | 0.0214 | 0.0046 | 0.0207 | 0.0046 | 0.0203 | ||
T=0.7 | (30, 20, 15) | 0.0287 | 0.0070 | 0.0246 | 0.0068 | 0.0235 | 0.0066 | 0.0229 | |
(40, 20, 15) | 0.0304 | 0.0054 | 0.0259 | 0.0053 | 0.0248 | 0.0051 | 0.0239 | ||
(60, 30, 20) | 0.0187 | 0.0047 | 0.0163 | 0.0046 | 0.0158 | 0.0046 | 0.0155 | ||
T=1.5 | (30, 20, 15) | 0.0301 | 0.0069 | 0.0257 | 0.0067 | 0.0246 | 0.0066 | 0.0238 | |
(40, 20, 15) | 0.0299 | 0.0060 | 0.0259 | 0.0059 | 0.0248 | 0.0058 | 0.0240 | ||
(60, 30, 20) | 0.0185 | 0.0047 | 0.0161 | 0.0046 | 0.0156 | 0.0046 | 0.0152 | ||
Sch−II | T=0.3 | (30, 20, 15) | 0.0459 | 0.0069 | 0.0409 | 0.0067 | 0.0382 | 0.0066 | 0.0364 |
(40, 20, 15) | 0.0310 | 0.0054 | 0.0272 | 0.0054 | 0.0259 | 0.0053 | 0.0253 | ||
(60, 30, 20) | 0.0215 | 0.0046 | 0.0190 | 0.0045 | 0.0184 | 0.0044 | 0.0180 | ||
T=0.7 | (30, 20, 15) | 0.0287 | 0.0066 | 0.0248 | 0.0066 | 0.0237 | 0.0064 | 0.0228 | |
(40, 20, 15) | 0.0256 | 0.0052 | 0.0220 | 0.0051 | 0.0210 | 0.0050 | 0.0202 | ||
(60, 30, 20) | 0.0176 | 0.0042 | 0.0153 | 0.0041 | 0.0148 | 0.0041 | 0.0144 | ||
T=1.5 | (30, 20, 15) | 0.0308 | 0.0069 | 0.0268 | 0.0067 | 0.0255 | 0.0066 | 0.0246 | |
(40, 20, 15) | 0.0279 | 0.0053 | 0.0243 | 0.0053 | 0.0231 | 0.0052 | 0.0221 | ||
(60, 30, 20) | 0.0161 | 0.0046 | 0.0140 | 0.0045 | 0.0136 | 0.0044 | 0.0133 | ||
Sch−III | T=0.3 | (30, 20, 15) | 0.0459 | 0.0069 | 0.0409 | 0.0067 | 0.0382 | 0.0066 | 0.0364 |
(40, 20, 15) | 0.0462 | 0.0046 | 0.0423 | 0.0046 | 0.0393 | 0.0046 | 0.0370 | ||
(60, 30, 20) | 0.0248 | 0.0043 | 0.0226 | 0.0042 | 0.0216 | 0.0042 | 0.0207 | ||
T=0.7 | (30, 20, 15) | 0.0350 | 0.0062 | 0.0304 | 0.0062 | 0.0286 | 0.0061 | 0.0272 | |
(40, 20, 15) | 0.0428 | 0.0051 | 0.0394 | 0.0050 | 0.0369 | 0.0049 | 0.0348 | ||
(60, 30, 20) | 0.0232 | 0.0041 | 0.0208 | 0.0040 | 0.0199 | 0.0040 | 0.0192 | ||
T=1.5 | (30, 20, 15) | 0.0401 | 0.0067 | 0.0354 | 0.0066 | 0.0333 | 0.0065 | 0.0318 | |
(40, 20, 15) | 0.0469 | 0.0050 | 0.0420 | 0.0050 | 0.0392 | 0.0049 | 0.0371 | ||
(60, 30, 20) | 0.0254 | 0.0045 | 0.0224 | 0.0044 | 0.0214 | 0.0043 | 0.0205 | ||
EB | |||||||||
Sch−I | T=0.3 | (30, 20, 15) | 0.0556 | 0.0107 | 0.0453 | 0.0083 | 0.0378 | 0.0038 | 0.0247 |
(40, 20, 15) | 0.0338 | 0.0057 | 0.0263 | 0.0039 | 0.0204 | 0.0006 | 0.0095 | ||
(60, 30, 20) | 0.0248 | 0.0047 | 0.0194 | 0.0032 | 0.0150 | 0.0003 | 0.0069 | ||
T=0.7 | (30, 20, 15) | 0.0335 | 0.0084 | 0.0246 | 0.0061 | 0.0194 | 0.0015 | 0.0096 | |
(40, 20, 15) | 0.0446 | 0.0077 | 0.0333 | 0.0059 | 0.0285 | 0.0025 | 0.0198 | ||
(60, 30, 20) | 0.0269 | 0.0064 | 0.0210 | 0.0050 | 0.0178 | 0.0021 | 0.0118 | ||
T=1.5 | (30, 20, 15) | 0.0426 | 0.0090 | 0.0324 | 0.0067 | 0.0273 | 0.0022 | 0.0181 | |
(40, 20, 15) | 0.0439 | 0.0092 | 0.0337 | 0.0074 | 0.0291 | 0.0041 | 0.0205 | ||
(60, 30, 20) | 0.0319 | 0.0063 | 0.0260 | 0.0048 | 0.0229 | 0.0020 | 0.0171 | ||
Sch−II | T=0.3 | (30, 20, 15) | 0.0592 | 0.0104 | 0.0480 | 0.0081 | 0.0403 | 0.0036 | 0.0272 |
(40, 20, 15) | 0.0350 | 0.0081 | 0.0258 | 0.0064 | 0.0200 | 0.0030 | 0.0093 | ||
(60, 30, 20) | 0.0262 | 0.0073 | 0.0200 | 0.0058 | 0.0157 | 0.0030 | 0.0077 | ||
T=0.7 | (30, 20, 15) | 0.0438 | 0.0082 | 0.0348 | 0.0059 | 0.0293 | 0.0015 | 0.0194 | |
(40, 20, 15) | 0.0426 | 0.0073 | 0.0339 | 0.0056 | 0.0291 | 0.0023 | 0.0203 | ||
(60, 30, 20) | 0.0305 | 0.0056 | 0.0224 | 0.0042 | 0.0192 | 0.0014 | 0.0133 | ||
T=1.5 | (30, 20, 15) | 0.0473 | 0.0086 | 0.0378 | 0.0062 | 0.0327 | 0.0018 | 0.0234 | |
(40, 20, 15) | 0.0494 | 0.0045 | 0.0384 | 0.0028 | 0.0335 | 0.0005 | 0.0248 | ||
(60, 30, 20) | 0.0239 | 0.0031 | 0.0184 | 0.0017 | 0.0153 | 0.0011 | 0.0095 | ||
Sch−III | T=0.3 | (30, 20, 15) | 0.0592 | 0.0104 | 0.0480 | 0.0081 | 0.0403 | 0.0036 | 0.0272 |
(40, 20, 15) | 0.0701 | 0.0073 | 0.0608 | 0.0057 | 0.0534 | 0.0026 | 0.0413 | ||
(60, 30, 20) | 0.0404 | 0.0066 | 0.0353 | 0.0051 | 0.0310 | 0.0024 | 0.0233 | ||
T=0.7 | (30, 20, 15) | 0.0516 | 0.0070 | 0.0422 | 0.0048 | 0.0360 | 0.0005 | 0.0252 | |
(40, 20, 15) | 0.0656 | 0.0084 | 0.0581 | 0.0068 | 0.0510 | 0.0037 | 0.0391 | ||
(60, 30, 20) | 0.0388 | 0.0054 | 0.0332 | 0.0040 | 0.0291 | 0.0013 | 0.0215 | ||
T=1.5 | (30, 20, 15) | 0.0561 | 0.0073 | 0.0464 | 0.0050 | 0.0402 | 0.0007 | 0.0296 | |
(40, 20, 15) | 0.0685 | 0.0077 | 0.0595 | 0.0061 | 0.0524 | 0.0030 | 0.0404 | ||
(60, 30, 20) | 0.0444 | 0.0082 | 0.0375 | 0.0068 | 0.0332 | 0.0041 | 0.0256 |
Bayesian | |||||||||
^S(t)BS | ^S(t)BL | ^S(t)BE | |||||||
Sch. | T | (n,m,k) | ^S(t)ML | IP | NIP | IP | NIP | IP | NIP |
MSE | |||||||||
Sch−I | T=0.3 | (30, 20, 15) | 0.0005 | 3.90×10−6 | 0.0016 | 3.90×10−6 | 0.0014 | 2.60×10−6 | 0.0003 |
(40, 20, 15) | 0.0010 | 3.90×10−6 | 0.0026 | 3.90×10−6 | 0.0025 | 1.30×10−6 | 0.0004 | ||
(60, 30, 20) | 0.0007 | 3.90×10−6 | 0.0016 | 3.90×10−6 | 0.0014 | 2.60×10−6 | 0.0004 | ||
T=0.7 | (30, 20, 15) | 0.0005 | 5.20×10−6 | 0.0012 | 5.20×10−6 | 0.0010 | 2.60×10−6 | 0.0003 | |
(40, 20, 15) | 0.0007 | 3.90×10−6 | 0.0014 | 3.90×10−6 | 0.0014 | 2.60×10−6 | 0.0004 | ||
(60, 30, 20) | 0.0003 | 5.20×10−6 | 0.0007 | 5.20×10−6 | 0.0007 | 2.60×10−6 | 0.0003 | ||
T=1.5 | (30, 20, 15) | 0.0003 | 3.90×10−6 | 0.0008 | 3.90×10−6 | 0.0008 | 2.60×10−6 | 0.0003 | |
(40, 20, 15) | 0.0005 | 5.20×10−6 | 0.0012 | 5.20×10−6 | 0.0012 | 2.60×10−6 | 0.0004 | ||
(60, 30, 20) | 0.0003 | 5.20×10−6 | 0.0005 | 5.20×10−6 | 0.0005 | 2.60×10−6 | 0.0001 | ||
Sch−II | T=0.3 | (30, 20, 15) | 0.0007 | 3.90×10−6 | 0.0018 | 3.90×10−6 | 0.0017 | 2.60×10−6 | 0.0004 |
(40, 20, 15) | 0.0012 | 3.90×10−6 | 0.0029 | 3.90×10−6 | 0.0027 | 2.60×10−6 | 0.0005 | ||
(60, 30, 20) | 0.0008 | 3.90×10−6 | 0.0017 | 3.90×10−6 | 0.0016 | 2.60×10−6 | 0.0005 | ||
T=0.7 | (30, 20, 15) | 0.0005 | 5.20×10−6 | 0.0010 | 5.20×10−6 | 0.0010 | 2.60×10−6 | 0.0004 | |
(40, 20, 15) | 0.0005 | 3.90×10−6 | 0.0012 | 3.90×10−6 | 0.0012 | 2.60×10−6 | 0.0003 | ||
(60, 30, 20) | 0.0003 | 5.20×10−6 | 0.0005 | 5.20×10−6 | 0.0005 | 2.60×10−6 | 0.0001 | ||
T=1.5 | (30, 20, 15) | 0.0004 | 5.20×10−6 | 0.0008 | 5.20×10−6 | 0.0008 | 2.60×10−6 | 0.0003 | |
(40, 20, 15) | 0.0004 | 3.90×10−6 | 0.0009 | 3.90×10−6 | 0.0009 | 2.60×10−6 | 0.0003 | ||
(60, 30, 20) | 0.0003 | 5.20×10−6 | 0.0004 | 5.20×10−6 | 0.0004 | 2.60×10−6 | 0.0001 | ||
Sch−III | T=0.3 | (30, 20, 15) | 0.0007 | 3.90×10−6 | 0.0018 | 3.90×10−6 | 0.0017 | 2.60×10−6 | 0.0004 |
(40, 20, 15) | 0.0007 | 2.60×10−6 | 0.0017 | 2.60×10−6 | 0.0016 | 1.30×10−6 | 0.0004 | ||
(60, 30, 20) | 0.0004 | 3.90×10−6 | 0.0008 | 3.90×10−6 | 0.0008 | 2.60×10−6 | 0.0003 | ||
T=0.7 | (30, 20, 15) | 0.0003 | 3.90×10−6 | 0.0007 | 3.90×10−6 | 0.0007 | 2.60×10−6 | 0.0003 | |
(40, 20, 15) | 0.0007 | 3.90×10−6 | 0.0017 | 3.90×10−6 | 0.0016 | 1.30×10−6 | 0.0004 | ||
(60, 30, 20) | 0.0003 | 3.90×10−6 | 0.0007 | 3.90×10−6 | 0.0007 | 2.60×10−6 | 0.0001 | ||
T=1.5 | (30, 20, 15) | 0.0003 | 3.90×10−6 | 0.0007 | 3.90×10−6 | 0.0007 | 2.60×10−6 | 0.0001 | |
(40, 20, 15) | 0.0008 | 3.90×10−6 | 0.0018 | 3.90×10−6 | 0.0017 | 1.30×10−6 | 0.0004 | ||
(60, 30, 20) | 0.0003 | 3.90×10−6 | 0.0007 | 3.90×10−6 | 0.0007 | 2.60×10−6 | 0.0001 | ||
EB | |||||||||
Sch−I | T=0.3 | (30, 20, 15) | 0.0070 | 0.0014 | 0.0270 | 0.0014 | 0.0260 | 0.0007 | 0.0014 |
(40, 20, 15) | 0.0120 | 0.0014 | 0.0350 | 0.0014 | 0.0340 | 0.0007 | 0.0003 | ||
(60, 30, 20) | 0.0090 | 0.0013 | 0.0250 | 0.0013 | 0.0250 | 0.0007 | 0.0004 | ||
T=0.7 | (30, 20, 15) | 0.0069 | 0.0014 | 0.0220 | 0.0013 | 0.0210 | 0.0007 | 0.0009 | |
(40, 20, 15) | 0.0073 | 0.0013 | 0.0230 | 0.0013 | 0.0230 | 0.0007 | 0.0007 | ||
(60, 30, 20) | 0.0049 | 0.0014 | 0.0150 | 0.0013 | 0.0150 | 0.0005 | 0.0003 | ||
T=1.5 | (30, 20, 15) | 0.0045 | 0.0012 | 0.0170 | 0.0012 | 0.0170 | 0.0008 | 0.0004 | |
(40, 20, 15) | 0.0069 | 0.0014 | 0.0220 | 0.0014 | 0.0220 | 0.0007 | 0.0001 | ||
(60, 30, 20) | 0.0032 | 0.0012 | 0.0120 | 0.0012 | 0.0120 | 0.0007 | 0.0008 | ||
Sch−II | T=0.3 | (30, 20, 15) | 0.0082 | 0.0014 | 0.0280 | 0.0014 | 0.0280 | 0.0007 | 0.0003 |
(40, 20, 15) | 0.0130 | 0.0014 | 0.0360 | 0.0014 | 0.0350 | 0.0007 | 0.0010 | ||
(60, 30, 20) | 0.0096 | 0.0014 | 0.0250 | 0.0014 | 0.0250 | 0.0007 | 0.0010 | ||
T=0.7 | (30, 20, 15) | 0.0055 | 0.0012 | 0.0190 | 0.0012 | 0.0190 | 0.0008 | 0.0010 | |
(40, 20, 15) | 0.0062 | 0.0013 | 0.0210 | 0.0013 | 0.0210 | 0.0007 | 0.0008 | ||
(60, 30, 20) | 0.0039 | 0.0013 | 0.0140 | 0.0013 | 0.0140 | 0.0007 | 0.0003 | ||
T=1.5 | (30, 20, 15) | 0.0045 | 0.0013 | 0.0170 | 0.0012 | 0.0160 | 0.0008 | 0.0003 | |
(40, 20, 15) | 0.0038 | 0.0012 | 0.0190 | 0.0012 | 0.0180 | 0.0008 | 0.0021 | ||
(60, 30, 20) | 0.0034 | 0.0013 | 0.0130 | 0.0013 | 0.0120 | 0.0007 | 0.0008 | ||
Sch−III | T=0.3 | (30, 20, 15) | 0.0082 | 0.0014 | 0.0280 | 0.0014 | 0.0280 | 0.0007 | 0.0003 |
(40, 20, 15) | 0.0074 | 0.0013 | 0.0260 | 0.0013 | 0.0260 | 0.0008 | 0.0025 | ||
(60, 30, 20) | 0.0055 | 0.0013 | 0.0170 | 0.0013 | 0.0170 | 0.0007 | 0.0010 | ||
T=0.7 | (30, 20, 15) | 0.0035 | 0.0013 | 0.0170 | 0.0012 | 0.0160 | 0.0008 | 0.0020 | |
(40, 20, 15) | 0.0070 | 0.0013 | 0.0260 | 0.0013 | 0.0260 | 0.0008 | 0.0027 | ||
(60, 30, 20) | 0.0041 | 0.0013 | 0.0150 | 0.0013 | 0.0150 | 0.0007 | 0.0018 | ||
T=1.5 | (30, 20, 15) | 0.0039 | 0.0012 | 0.0170 | 0.0012 | 0.0160 | 0.0008 | 0.0017 | |
(40, 20, 15) | 0.0080 | 0.0014 | 0.0270 | 0.0013 | 0.0260 | 0.0007 | 0.0020 | ||
(60, 30, 20) | 0.0042 | 0.0013 | 0.0150 | 0.0013 | 0.0150 | 0.0007 | 0.0018 |
Bayesian | |||||||||
^H(t)BS | ^H(t)BL | ^H(t)BE | |||||||
Sch. | T | (n,m,k) | ^H(t)ML | IP | NIP | IP | NIP | IP | NIP |
MSE | |||||||||
Sch−I | T=0.3 | (30, 20, 15) | 0.0250 | 4.20×10−5 | 0.0390 | 4.20×10−5 | 0.0320 | 4.20×10−5 | 0.0200 |
(40, 20, 15) | 0.0220 | 4.20×10−5 | 0.0350 | 4.20×10−5 | 0.0300 | 4.20×10−5 | 0.0190 | ||
(60, 30, 20) | 0.0250 | 5.60×10−5 | 0.0370 | 5.60×10−5 | 0.0270 | 5.60×10−5 | 0.0240 | ||
T=0.7 | (30, 20, 15) | 0.0110 | 5.60×10−5 | 0.0130 | 5.60×10−5 | 0.0130 | 7.00×10−5 | 0.0095 | |
(40, 20, 15) | 0.0290 | 5.60×10−5 | 0.0400 | 5.60×10−5 | 0.0330 | 5.60×10−5 | 0.0220 | ||
(60, 30, 20) | 0.0084 | 8.40×10−5 | 0.0110 | 8.40×10−5 | 0.0100 | 8.40×10−5 | 0.0081 | ||
T=1.5 | (30, 20, 15) | 0.0120 | 7.00×10−5 | 0.0150 | 7.00×10−5 | 0.0140 | 7.00×10−5 | 0.0110 | |
(40, 20, 15) | 0.0240 | 5.60×10−5 | 0.0350 | 5.60×10−5 | 0.0300 | 5.60×10−5 | 0.0210 | ||
(60, 30, 20) | 0.0100 | 7.00×10−5 | 0.0130 | 8.40×10−5 | 0.0120 | 8.40×10−5 | 0.0095 | ||
Sch−II | T=0.3 | (30, 20, 15) | 0.0260 | 4.20×10−5 | 0.0390 | 4.20×10−5 | 0.0340 | 5.60×10−5 | 0.0220 |
(40, 20, 15) | 0.0220 | 4.20×10−5 | 0.0340 | 4.20×10−5 | 0.0300 | 4.20×10−5 | 0.0190 | ||
(60, 30, 20) | 0.0120 | 5.60×10−5 | 0.0170 | 5.60×10−5 | 0.0150 | 5.60×10−5 | 0.0110 | ||
T=0.7 | (30, 20, 15) | 0.0130 | 5.60×10−5 | 0.0180 | 5.60×10−5 | 0.0170 | 7.00×10−5 | 0.0120 | |
(40, 20, 15) | 0.0190 | 5.60×10−5 | 0.0280 | 5.60×10−5 | 0.0250 | 5.60×10−5 | 0.0160 | ||
(60, 30, 20) | 0.0086 | 7.00×10−5 | 0.0110 | 7.00×10−5 | 0.0110 | 8.40×10−5 | 0.0081 | ||
T=1.5 | (30, 20, 15) | 0.0130 | 7.00×10−5 | 0.0170 | 7.00×10−5 | 0.0160 | 7.00×10−5 | 0.0120 | |
(40, 20, 15) | 0.0260 | 4.20×10−5 | 0.0420 | 4.20×10−5 | 0.0350 | 5.60×10−5 | 0.0230 | ||
(60, 30, 20) | 0.0076 | 7.00×10−5 | 0.0100 | 7.00×10−5 | 0.0096 | 7.00×10−5 | 0.0074 | ||
Sch−III | T=0.3 | (30, 20, 15) | 0.0260 | 4.20×10−5 | 0.0390 | 4.20×10−5 | 0.0340 | 5.60×10−5 | 0.0220 |
(40, 20, 15) | 0.0750 | 4.20×10−5 | 0.2200 | 4.20×10−5 | 0.1100 | 4.20×10−5 | 0.0680 | ||
(60, 30, 20) | 0.0150 | 5.60×10−5 | 0.0230 | 5.60×10−5 | 0.0210 | 5.60×10−5 | 0.0140 | ||
T=0.7 | (30, 20, 15) | 0.0260 | 5.60×10−5 | 0.0430 | 5.60×10−5 | 0.0340 | 5.60×10−5 | 0.0240 | |
(40, 20, 15) | 0.0660 | 4.20×10−5 | 0.1500 | 4.20×10−5 | 0.0910 | 4.20×10−5 | 0.0570 | ||
(60, 30, 20) | 0.0160 | 5.60×10−5 | 0.0230 | 5.60×10−5 | 0.0210 | 5.60×10−5 | 0.0140 | ||
T=1.5 | (30, 20, 15) | 0.0250 | 5.60×10−5 | 0.0430 | 5.60×10−5 | 0.0340 | 5.60×10−5 | 0.0230 | |
(40, 20, 15) | 0.0870 | 4.20×10−5 | 0.2000 | 4.20×10−5 | 0.1000 | 4.20×10−5 | 0.0700 | ||
(60, 30, 20) | 0.0170 | 5.60×10−5 | 0.0260 | 5.60×10−5 | 0.0230 | 5.60×10−5 | 0.0150 | ||
EB | |||||||||
Sch−I | T=0.3 | (30, 20, 15) | 0.0600 | 1.70×10−4 | 0.0880 | 3.20×10−4 | 0.0800 | 0.0027 | 0.0320 |
(40, 20, 15) | 0.0510 | 3.60×10−4 | 0.0810 | 5.20×10−4 | 0.0730 | 0.0028 | 0.0240 | ||
(60, 30, 20) | 0.0360 | 2.80×10−5 | 0.0540 | 1.10×10−4 | 0.0490 | 0.0024 | 0.0180 | ||
T=0.7 | (30, 20, 15) | 0.0330 | 3.80×10−4 | 0.0400 | 5.20×10−4 | 0.0370 | 0.0028 | 0.0110 | |
(40, 20, 15) | 0.0610 | 9.80×10−5 | 0.0810 | 5.60×10−5 | 0.0740 | 0.0024 | 0.0370 | ||
(60, 30, 20) | 0.0290 | 1.10×10−5 | 0.0370 | 1.50×10−4 | 0.0350 | 0.0024 | 0.0160 | ||
T=1.5 | (30, 20, 15) | 0.0400 | 2.40×10−4 | 0.0480 | 9.80×10−5 | 0.0450 | 0.0021 | 0.0200 | |
(40, 20, 15) | 0.0550 | 1.50×10−4 | 0.0740 | 3.10×10−4 | 0.0680 | 0.0025 | 0.0330 | ||
(60, 30, 20) | 0.0340 | 5.90×10−4 | 0.0440 | 4.50×10−4 | 0.0420 | 0.0017 | 0.0230 | ||
Sch−II | T=0.3 | (30, 20, 15) | 0.0640 | 3.40×10−4 | 0.0920 | 4.90×10−4 | 0.0840 | 0.0028 | 0.0350 |
(40, 20, 15) | 0.0510 | 3.50×10−4 | 0.0780 | 5.00×10−4 | 0.0700 | 0.0028 | 0.0230 | ||
(60, 30, 20) | 0.0330 | 1.40×10−5 | 0.0490 | 1.40×10−4 | 0.0450 | 0.0024 | 0.0140 | ||
T=0.7 | (30, 20, 15) | 0.0440 | 3.80×10−4 | 0.0550 | 2.20×10−4 | 0.0510 | 0.0021 | 0.0240 | |
(40, 20, 15) | 0.0550 | 4.20×10−5 | 0.0770 | 1.10×10−4 | 0.0720 | 0.0024 | 0.0340 | ||
(60, 30, 20) | 0.0330 | 4.90×10−4 | 0.0410 | 3.50×10−4 | 0.0390 | 0.0018 | 0.0190 | ||
T=1.5 | (30, 20, 15) | 0.0460 | 2.50×10−4 | 0.0570 | 1.10×10−4 | 0.0540 | 0.0021 | 0.0280 | |
(40, 20, 15) | 0.0670 | 4.20×10−4 | 0.0920 | 2.80×10−4 | 0.0850 | 0.0020 | 0.0450 | ||
(60, 30, 20) | 0.0280 | 1.30×10−4 | 0.0370 | 1.10×10−5 | 0.0350 | 0.0023 | 0.0160 | ||
Sch−III | T=0.3 | (30, 20, 15) | 0.0640 | 3.40×10−4 | 0.0920 | 4.90×10−4 | 0.0840 | 0.0028 | 0.0350 |
(40, 20, 15) | 0.1100 | 3.40×10−4 | 0.2000 | 1.80×10−4 | 0.1600 | 0.0021 | 0.0860 | ||
(60, 30, 20) | 0.0460 | 3.90×10−4 | 0.0700 | 2.40×10−4 | 0.0650 | 0.0020 | 0.0340 | ||
T=0.7 | (30, 20, 15) | 0.0560 | 1.30×10−4 | 0.0770 | 1.10×10−5 | 0.0710 | 0.0024 | 0.0370 | |
(40, 20, 15) | 0.0970 | 2.90×10−4 | 0.1700 | 1.40×10−4 | 0.1400 | 0.0023 | 0.0740 | ||
(60, 30, 20) | 0.0460 | 3.60×10−4 | 0.0680 | 2.10×10−4 | 0.0640 | 0.0021 | 0.0330 | ||
T=1.5 | (30, 20, 15) | 0.0600 | 1.10×10−4 | 0.0830 | 4.20×10−5 | 0.0760 | 0.0024 | 0.0410 | |
(40, 20, 15) | 0.1100 | 8.40×10−5 | 0.1800 | 7.00×10−5 | 0.1500 | 0.0024 | 0.0810 | ||
(60, 30, 20) | 0.0500 | 5.70×10−4 | 0.0730 | 4.20×10−4 | 0.0680 | 0.0018 | 0.0370 |
3. From Tables 7–10 in the appendix, the AL of confidence intervals decreases as T increases, and the credible intervals perform well compared to the asymptotic confidence intervals. Finally, in all cases AL of the confidence intervals, the 95% intervals are larger than the 90% intervals.
ˆλB | |||||||||||||
ˆλML | IP | NIP | |||||||||||
90% | 95% | 90% | 95% | 90% | 95% | ||||||||
T | (n,m,k) | AL | CP | AL | CP | AL | CP | AL | CP | AL | CP | AL | CP |
Sch.I | |||||||||||||
T=0.3 | (30, 20, 15) | 2.733 | 0.918 | 3.161 | 0.950 | 0.911 | 0.940 | 1.078 | 0.965 | 2.683 | 0.863 | 3.138 | 0.928 |
(40, 20, 15) | 2.871 | 0.930 | 3.309 | 0.945 | 0.828 | 0.947 | 0.986 | 0.970 | 2.810 | 0.879 | 3.317 | 0.925 | |
(60, 30, 20) | 2.135 | 0.907 | 2.544 | 0.941 | 0.769 | 0.948 | 0.920 | 0.969 | 2.098 | 0.867 | 2.511 | 0.922 | |
T=0.7 | (30, 20, 15) | 1.665 | 0.873 | 1.935 | 0.943 | 0.741 | 0.934 | 0.877 | 0.965 | 1.614 | 0.851 | 1.864 | 0.927 |
(40, 20, 15) | 2.012 | 0.924 | 2.417 | 0.935 | 0.674 | 0.945 | 0.803 | 0.964 | 1.956 | 0.877 | 2.360 | 0.892 | |
(60, 30, 20) | 1.393 | 0.878 | 1.638 | 0.946 | 0.623 | 0.931 | 0.737 | 0.969 | 1.355 | 0.856 | 1.596 | 0.918 | |
T=1.5 | (30, 20, 15) | 1.420 | 0.901 | 1.692 | 0.942 | 0.658 | 0.945 | 0.780 | 0.965 | 1.378 | 0.871 | 1.634 | 0.927 |
(40, 20, 15) | 1.748 | 0.931 | 2.067 | 0.945 | 0.602 | 0.946 | 0.708 | 0.965 | 1.707 | 0.864 | 2.015 | 0.907 | |
(60, 30, 20) | 1.208 | 0.907 | 1.461 | 0.940 | 0.554 | 0.937 | 0.656 | 0.965 | 1.173 | 0.889 | 1.420 | 0.913 | |
Sch.II | |||||||||||||
T=0.3 | (30, 20, 15) | 2.727 | 0.908 | 3.181 | 0.940 | 0.909 | 0.930 | 1.079 | 0.965 | 2.653 | 0.858 | 3.143 | 0.912 |
(40, 20, 15) | 2.917 | 0.920 | 3.260 | 0.937 | 0.824 | 0.955 | 0.972 | 0.965 | 2.883 | 0.867 | 3.243 | 0.923 | |
(60, 30, 20) | 2.098 | 0.899 | 2.499 | 0.930 | 0.766 | 0.946 | 0.908 | 0.968 | 2.047 | 0.865 | 2.456 | 0.907 | |
T=0.7 | (30, 20, 15) | 1.648 | 0.886 | 1.984 | 0.942 | 0.738 | 0.944 | 0.876 | 0.961 | 1.592 | 0.858 | 1.930 | 0.917 |
(40, 20, 15) | 2.328 | 0.905 | 2.408 | 0.943 | 0.673 | 0.944 | 0.795 | 0.964 | 2.296 | 0.848 | 2.355 | 0.913 | |
(60, 30, 20) | 1.367 | 0.901 | 1.661 | 0.941 | 0.616 | 0.947 | 0.734 | 0.970 | 1.334 | 0.875 | 1.612 | 0.913 | |
T=1.5 | (30, 20, 15) | 1.481 | 0.879 | 1.726 | 0.935 | 0.654 | 0.934 | 0.782 | 0.959 | 1.455 | 0.858 | 1.683 | 0.907 |
(40, 20, 15) | 1.866 | 0.938 | 2.224 | 0.951 | 0.596 | 0.948 | 0.710 | 0.966 | 1.811 | 0.863 | 2.189 | 0.922 | |
(60, 30, 20) | 1.203 | 0.900 | 1.442 | 0.946 | 0.547 | 0.945 | 0.653 | 0.965 | 1.169 | 0.881 | 1.407 | 0.913 | |
Sch.III | |||||||||||||
T=0.3 | (30, 20, 15) | 2.425 | 0.915 | 3.181 | 0.940 | 0.887 | 0.927 | 1.079 | 0.965 | 2.382 | 0.879 | 3.143 | 0.912 |
(40, 20, 15) | 3.676 | 0.928 | 4.329 | 0.951 | 0.798 | 0.948 | 0.945 | 0.974 | 3.932 | 0.857 | 4.748 | 0.912 | |
(60, 30, 20) | 2.083 | 0.913 | 2.451 | 0.945 | 0.742 | 0.951 | 0.875 | 0.964 | 2.057 | 0.854 | 2.459 | 0.911 | |
T=0.7 | (30, 20, 15) | 1.771 | 0.919 | 2.142 | 0.949 | 0.721 | 0.940 | 0.855 | 0.966 | 1.727 | 0.866 | 2.120 | 0.920 |
(40, 20, 15) | 3.077 | 0.924 | 3.378 | 0.952 | 0.656 | 0.942 | 0.773 | 0.968 | 3.272 | 0.844 | 3.600 | 0.916 | |
(60, 30, 20) | 1.670 | 0.913 | 1.993 | 0.949 | 0.601 | 0.949 | 0.715 | 0.967 | 1.669 | 0.859 | 1.986 | 0.917 | |
T=1.5 | (30, 20, 15) | 1.544 | 0.924 | 1.920 | 0.951 | 0.644 | 0.925 | 0.762 | 0.970 | 1.512 | 0.886 | 1.913 | 0.907 |
(40, 20, 15) | 2.793 | 0.927 | 3.096 | 0.943 | 0.580 | 0.948 | 0.685 | 0.967 | 2.910 | 0.837 | 3.291 | 0.896 | |
(60, 30, 20) | 1.517 | 0.913 | 1.792 | 0.955 | 0.534 | 0.937 | 0.634 | 0.957 | 1.502 | 0.844 | 1.792 | 0.917 |
Bayesian | |||||||||||||
ˆμML | IP | NIP | |||||||||||
90% | 95% | 90% | 95% | 90% | 95% | ||||||||
T | (n,m,k) | AL | CP | AL | CP | AL | CP | AL | CP | AL | CP | AL | CP |
Sch.I | |||||||||||||
T=0.3 | (30, 20, 15) | 0.933 | 0.901 | 1.101 | 0.983 | 0.456 | 0.955 | 0.541 | 0.989 | 0.910 | 0.891 | 1.055 | 0.961 |
(40, 20, 15) | 0.833 | 0.904 | 0.979 | 0.968 | 0.393 | 0.940 | 0.466 | 0.991 | 0.804 | 0.876 | 0.937 | 0.951 | |
(60, 30, 20) | 0.710 | 0.915 | 0.837 | 0.963 | 0.366 | 0.952 | 0.427 | 0.987 | 0.695 | 0.890 | 0.805 | 0.931 | |
T=0.7 | (30, 20, 15) | 0.726 | 0.917 | 0.855 | 0.962 | 0.423 | 0.963 | 0.496 | 0.984 | 0.706 | 0.898 | 0.819 | 0.942 |
(40, 20, 15) | 0.688 | 0.916 | 0.814 | 0.960 | 0.364 | 0.957 | 0.432 | 0.990 | 0.671 | 0.896 | 0.783 | 0.931 | |
(60, 30, 20) | 0.556 | 0.895 | 0.661 | 0.945 | 0.335 | 0.939 | 0.396 | 0.986 | 0.542 | 0.882 | 0.642 | 0.927 | |
T=1.5 | (30, 20, 15) | 0.645 | 0.918 | 0.766 | 0.959 | 0.387 | 0.952 | 0.457 | 0.983 | 0.632 | 0.901 | 0.739 | 0.938 |
(40, 20, 15) | 0.614 | 0.928 | 0.735 | 0.966 | 0.331 | 0.954 | 0.393 | 0.970 | 0.594 | 0.893 | 0.707 | 0.930 | |
(60, 30, 20) | 0.500 | 0.917 | 0.599 | 0.949 | 0.306 | 0.954 | 0.363 | 0.987 | 0.488 | 0.899 | 0.578 | 0.927 | |
Sch.II | |||||||||||||
T=0.3 | (30, 20, 15) | 0.931 | 0.908 | 1.106 | 0.973 | 0.455 | 0.955 | 0.537 | 0.990 | 0.900 | 0.893 | 1.061 | 0.935 |
(40, 20, 15) | 0.820 | 0.905 | 0.971 | 0.971 | 0.388 | 0.955 | 0.462 | 0.983 | 0.797 | 0.882 | 0.929 | 0.949 | |
(60, 30, 20) | 0.700 | 0.918 | 0.834 | 0.975 | 0.362 | 0.962 | 0.426 | 0.982 | 0.681 | 0.905 | 0.798 | 0.949 | |
T=0.7 | (30, 20, 15) | 0.719 | 0.912 | 0.858 | 0.972 | 0.417 | 0.958 | 0.494 | 0.991 | 0.703 | 0.888 | 0.834 | 0.952 |
(40, 20, 15) | 0.757 | 0.918 | 0.816 | 0.970 | 0.358 | 0.957 | 0.423 | 0.985 | 0.735 | 0.899 | 0.785 | 0.956 | |
(60, 30, 20) | 0.555 | 0.907 | 0.662 | 0.969 | 0.334 | 0.960 | 0.391 | 0.983 | 0.545 | 0.879 | 0.637 | 0.947 | |
T=1.5 | (30, 20, 15) | 0.654 | 0.909 | 0.768 | 0.966 | 0.384 | 0.952 | 0.456 | 0.984 | 0.640 | 0.874 | 0.744 | 0.933 |
(40, 20, 15) | 0.633 | 0.907 | 0.751 | 0.971 | 0.331 | 0.960 | 0.388 | 0.980 | 0.615 | 0.874 | 0.721 | 0.954 | |
(60, 30, 20) | 0.506 | 0.890 | 0.593 | 0.971 | 0.307 | 0.939 | 0.357 | 0.988 | 0.490 | 0.872 | 0.578 | 0.953 | |
Sch.III | |||||||||||||
T=0.3 | (30, 20, 15) | 0.915 | 0.926 | 1.106 | 0.973 | 0.447 | 0.941 | 0.537 | 0.990 | 0.891 | 0.891 | 1.061 | 0.935 |
(40, 20, 15) | 0.918 | 0.906 | 1.080 | 0.970 | 0.377 | 0.942 | 0.445 | 0.987 | 0.884 | 0.862 | 1.031 | 0.937 | |
(60, 30, 20) | 0.693 | 0.925 | 0.832 | 0.972 | 0.351 | 0.960 | 0.417 | 0.990 | 0.675 | 0.900 | 0.801 | 0.934 | |
T=0.7 | (30, 20, 15) | 0.772 | 0.922 | 0.914 | 0.980 | 0.415 | 0.955 | 0.485 | 0.997 | 0.750 | 0.902 | 0.884 | 0.964 |
(40, 20, 15) | 0.834 | 0.925 | 0.990 | 0.974 | 0.345 | 0.950 | 0.411 | 0.987 | 0.806 | 0.876 | 0.941 | 0.935 | |
(60, 30, 20) | 0.641 | 0.919 | 0.760 | 0.968 | 0.326 | 0.955 | 0.383 | 0.992 | 0.623 | 0.890 | 0.729 | 0.947 | |
T=1.5 | (30, 20, 15) | 0.704 | 0.921 | 0.842 | 0.971 | 0.382 | 0.942 | 0.446 | 0.992 | 0.686 | 0.896 | 0.808 | 0.947 |
(40, 20, 15) | 0.773 | 0.914 | 0.911 | 0.963 | 0.318 | 0.956 | 0.377 | 0.979 | 0.739 | 0.878 | 0.860 | 0.923 | |
(60, 30, 20) | 0.589 | 0.928 | 0.702 | 0.970 | 0.297 | 0.949 | 0.354 | 0.987 | 0.573 | 0.904 | 0.677 | 0.940 |
^S(t)B | |||||||||||||
^S(t)ML | IP | NIP | |||||||||||
90% | 95% | 90% | 95% | 90% | 95% | ||||||||
T | (n,m,k) | AL | CP | AL | CP | AL | CP | AL | CP | AL | CP | AL | CP |
Sch.I | |||||||||||||
T=0.3 | (30, 20, 15) | 0.088 | 0.736 | 0.110 | 0.797 | 0.021 | 0.980 | 0.026 | 0.985 | 0.138 | 0.922 | 0.185 | 0.949 |
(40, 20, 15) | 0.113 | 0.771 | 0.140 | 0.813 | 0.022 | 0.987 | 0.026 | 0.993 | 0.164 | 0.919 | 0.215 | 0.948 | |
(60, 30, 20) | 0.091 | 0.803 | 0.110 | 0.849 | 0.021 | 0.976 | 0.026 | 0.978 | 0.123 | 0.907 | 0.158 | 0.945 | |
T=0.7 | (30, 20, 15) | 0.068 | 0.789 | 0.088 | 0.856 | 0.020 | 0.965 | 0.024 | 0.963 | 0.099 | 0.903 | 0.133 | 0.946 |
(40, 20, 15) | 0.069 | 0.727 | 0.092 | 0.799 | 0.020 | 0.954 | 0.024 | 0.948 | 0.105 | 0.926 | 0.144 | 0.919 | |
(60, 30, 20) | 0.057 | 0.812 | 0.069 | 0.875 | 0.019 | 0.980 | 0.023 | 0.985 | 0.075 | 0.914 | 0.097 | 0.929 | |
T=1.5 | (30, 20, 15) | 0.058 | 0.790 | 0.069 | 0.838 | 0.018 | 0.965 | 0.022 | 0.918 | 0.084 | 0.918 | 0.108 | 0.939 |
(40, 20, 15) | 0.066 | 0.758 | 0.083 | 0.809 | 0.018 | 0.954 | 0.022 | 0.985 | 0.098 | 0.909 | 0.132 | 0.934 | |
(60, 30, 20) | 0.049 | 0.833 | 0.058 | 0.856 | 0.018 | 0.980 | 0.021 | 0.903 | 0.066 | 0.948 | 0.083 | 0.929 | |
Sch.II | |||||||||||||
T=0.3 | (30, 20, 15) | 0.089 | 0.743 | 0.113 | 0.769 | 0.021 | 0.980 | 0.026 | 0.985 | 0.140 | 0.921 | 0.188 | 0.943 |
(40, 20, 15) | 0.111 | 0.754 | 0.143 | 0.802 | 0.021 | 0.965 | 0.026 | 0.963 | 0.159 | 0.904 | 0.215 | 0.954 | |
(60, 30, 20) | 0.092 | 0.814 | 0.110 | 0.859 | 0.021 | 0.954 | 0.026 | 0.948 | 0.125 | 0.921 | 0.156 | 0.934 | |
T=0.7 | (30, 20, 15) | 0.068 | 0.794 | 0.080 | 0.802 | 0.020 | 0.943 | 0.024 | 0.933 | 0.098 | 0.910 | 0.124 | 0.944 |
(40, 20, 15) | 0.105 | 0.730 | 0.088 | 0.802 | 0.020 | 0.932 | 0.024 | 0.918 | 0.150 | 0.912 | 0.139 | 0.940 | |
(60, 30, 20) | 0.055 | 0.821 | 0.066 | 0.836 | 0.019 | 0.980 | 0.023 | 0.985 | 0.074 | 0.913 | 0.094 | 0.930 | |
T=1.5 | (30, 20, 15) | 0.054 | 0.765 | 0.067 | 0.793 | 0.018 | 0.943 | 0.022 | 0.888 | 0.078 | 0.905 | 0.104 | 0.928 |
(40, 20, 15) | 0.063 | 0.735 | 0.073 | 0.781 | 0.018 | 0.932 | 0.022 | 0.985 | 0.096 | 0.895 | 0.123 | 0.950 | |
(60, 30, 20) | 0.048 | 0.827 | 0.059 | 0.884 | 0.018 | 0.980 | 0.021 | 0.873 | 0.064 | 0.913 | 0.085 | 0.934 | |
Sch.III | |||||||||||||
T=0.3 | (30, 20, 15) | 0.101 | 0.782 | 0.113 | 0.769 | 0.021 | 0.979 | 0.026 | 0.985 | 0.144 | 0.919 | 0.188 | 0.943 |
(40, 20, 15) | 0.089 | 0.668 | 0.114 | 0.730 | 0.021 | 0.943 | 0.026 | 0.933 | 0.132 | 0.888 | 0.180 | 0.926 | |
(60, 30, 20) | 0.070 | 0.778 | 0.085 | 0.808 | 0.021 | 0.932 | 0.025 | 0.918 | 0.093 | 0.901 | 0.120 | 0.936 | |
T=0.7 | (30, 20, 15) | 0.065 | 0.766 | 0.074 | 0.815 | 0.020 | 0.921 | 0.024 | 0.903 | 0.093 | 0.908 | 0.119 | 0.951 |
(40, 20, 15) | 0.088 | 0.684 | 0.105 | 0.758 | 0.020 | 0.910 | 0.024 | 0.888 | 0.129 | 0.891 | 0.170 | 0.933 | |
(60, 30, 20) | 0.063 | 0.803 | 0.074 | 0.830 | 0.019 | 0.980 | 0.023 | 0.985 | 0.083 | 0.906 | 0.107 | 0.937 | |
T=1.5 | (30, 20, 15) | 0.058 | 0.788 | 0.069 | 0.797 | 0.018 | 0.921 | 0.022 | 0.858 | 0.084 | 0.947 | 0.109 | 0.941 |
(40, 20, 15) | 0.078 | 0.684 | 0.099 | 0.747 | 0.018 | 0.910 | 0.023 | 0.985 | 0.116 | 0.883 | 0.158 | 0.927 | |
(60, 30, 20) | 0.057 | 0.787 | 0.069 | 0.803 | 0.018 | 0.980 | 0.022 | 0.903 | 0.077 | 0.899 | 0.098 | 0.939 |
^H(t)B | |||||||||||||
^H(t)ML | IP | NIP | |||||||||||
90% | 95% | 90% | 95% | 90% | 95% | ||||||||
T | (n,m,k) | AL | CP | AL | CP | AL | CP | AL | CP | AL | CP | AL | CP |
Sch.I | |||||||||||||
T=0.3 | (30, 20, 15) | 0.472 | 0.716 | 0.537 | 0.769 | 0.078 | 0.961 | 0.093 | 0.966 | 0.475 | 0.943 | 0.556 | 0.963 |
(40, 20, 15) | 0.473 | 0.750 | 0.533 | 0.784 | 0.078 | 0.980 | 0.092 | 1.000 | 0.474 | 0.933 | 0.559 | 0.956 | |
(60, 30, 20) | 0.344 | 0.781 | 0.408 | 0.819 | 0.078 | 1.000 | 0.091 | 1.000 | 0.345 | 0.922 | 0.416 | 0.959 | |
T=0.7 | (30, 20, 15) | 0.310 | 0.767 | 0.354 | 0.825 | 0.074 | 1.031 | 0.087 | 1.000 | 0.300 | 0.924 | 0.343 | 0.953 |
(40, 20, 15) | 0.344 | 0.707 | 0.417 | 0.770 | 0.067 | 0.963 | 0.080 | 0.955 | 0.339 | 0.946 | 0.417 | 0.925 | |
(60, 30, 20) | 0.256 | 0.790 | 0.301 | 0.843 | 0.072 | 1.000 | 0.086 | 1.000 | 0.249 | 0.926 | 0.294 | 0.937 | |
T=1.5 | (30, 20, 15) | 0.288 | 0.768 | 0.343 | 0.808 | 0.072 | 1.000 | 0.085 | 1.000 | 0.280 | 0.931 | 0.332 | 0.938 |
(40, 20, 15) | 0.332 | 0.737 | 0.397 | 0.780 | 0.067 | 0.975 | 0.079 | 0.995 | 0.330 | 0.930 | 0.395 | 0.942 | |
(60, 30, 20) | 0.243 | 0.810 | 0.296 | 0.825 | 0.071 | 1.000 | 0.084 | 1.000 | 0.235 | 0.959 | 0.290 | 0.931 | |
Sch.II | |||||||||||||
T=0.3 | (30, 20, 15) | 0.470 | 0.722 | 0.546 | 0.742 | 0.078 | 0.927 | 0.093 | 0.975 | 0.466 | 0.936 | 0.562 | 0.949 |
(40, 20, 15) | 0.485 | 0.733 | 0.527 | 0.773 | 0.078 | 0.967 | 0.092 | 0.989 | 0.494 | 0.924 | 0.547 | 0.955 | |
(60, 30, 20) | 0.333 | 0.792 | 0.398 | 0.828 | 0.077 | 1.035 | 0.091 | 1.000 | 0.329 | 0.937 | 0.401 | 0.945 | |
T=0.7 | (30, 20, 15) | 0.310 | 0.773 | 0.375 | 0.773 | 0.074 | 0.967 | 0.088 | 1.000 | 0.299 | 0.925 | 0.369 | 0.955 |
(40, 20, 15) | 0.429 | 0.710 | 0.438 | 0.773 | 0.074 | 0.967 | 0.087 | 0.959 | 0.434 | 0.935 | 0.440 | 0.949 | |
(60, 30, 20) | 0.253 | 0.798 | 0.308 | 0.806 | 0.073 | 1.007 | 0.086 | 1.000 | 0.247 | 0.926 | 0.300 | 0.940 | |
T=1.5 | (30, 20, 15) | 0.315 | 0.744 | 0.357 | 0.765 | 0.072 | 0.956 | 0.085 | 1.000 | 0.314 | 0.925 | 0.350 | 0.935 |
(40, 20, 15) | 0.387 | 0.715 | 0.455 | 0.753 | 0.073 | 0.941 | 0.086 | 0.965 | 0.380 | 0.926 | 0.461 | 0.961 | |
(60, 30, 20) | 0.248 | 0.805 | 0.290 | 0.852 | 0.071 | 1.000 | 0.084 | 1.000 | 0.239 | 0.925 | 0.285 | 0.941 | |
Sch.III | |||||||||||||
T=0.3 | (30, 20, 15) | 0.417 | 0.761 | 0.546 | 0.742 | 0.078 | 0.927 | 0.093 | 1.000 | 0.420 | 0.935 | 0.562 | 0.949 |
(40, 20, 15) | 0.663 | 0.649 | 0.779 | 0.704 | 0.078 | 0.880 | 0.093 | 0.877 | 0.771 | 0.906 | 0.944 | 0.933 | |
(60, 30, 20) | 0.348 | 0.756 | 0.412 | 0.779 | 0.077 | 0.973 | 0.091 | 1.000 | 0.349 | 0.917 | 0.427 | 0.948 | |
T=0.7 | (30, 20, 15) | 0.362 | 0.745 | 0.429 | 0.786 | 0.074 | 0.983 | 0.088 | 1.000 | 0.358 | 0.930 | 0.437 | 0.962 |
(40, 20, 15) | 0.607 | 0.666 | 0.665 | 0.731 | 0.075 | 0.914 | 0.089 | 0.898 | 0.695 | 0.912 | 0.758 | 0.946 | |
(60, 30, 20) | 0.332 | 0.781 | 0.394 | 0.800 | 0.074 | 1.000 | 0.087 | 1.000 | 0.338 | 0.923 | 0.405 | 0.952 | |
T=1.5 | (30, 20, 15) | 0.338 | 0.766 | 0.429 | 0.769 | 0.073 | 0.961 | 0.086 | 1.000 | 0.335 | 0.962 | 0.443 | 0.953 |
(40, 20, 15) | 0.621 | 0.666 | 0.689 | 0.720 | 0.073 | 0.900 | 0.087 | 0.898 | 0.686 | 0.903 | 0.796 | 0.936 | |
(60, 30, 20) | 0.331 | 0.765 | 0.394 | 0.774 | 0.072 | 0.968 | 0.086 | 1.000 | 0.333 | 0.923 | 0.408 | 0.950 |
This work is supported by Researchers Supporting Project number (RSP-2021/323), King Saud University, Riyadh, Saudi Arabia.
We are grateful to the referees and the editor for their careful reading and their constructive comments, which leads to this greatly improved paper.
The authors acknowledge financial support from the Researchers Supporting Project number (RSP-2021/323), King Saud University, Riyadh, Saudi Arabia.
The authors declare there is no conflict of interest.
[1] |
Abeln B, Jacobs JPAM (2022) COVID-19 and seasonal adjustment. J Bus Cycle Res 18: 159–169. https://doi.org/10.1007/s41549-022-00071-z doi: 10.1007/s41549-022-00071-z
![]() |
[2] | Akritidis L (2002) Accuracy assessment of National Accounts statistics. Economic Trends, 38–53. Available from: https://escoe-website.s3.amazonaws.com/wp-content/uploads/2020/01/01233815/ET-589-Accuracy-assessment-of-national-accounts-statistics-L-Akritidis-Dec-2002.pdf. |
[3] |
Biddle J, Boumans M (2021) Exploring the History of Statistical Inference in Economics: Introduction. Hist Polit Econ 53: 1–24. https://doi.org/10.1215/00182702-9414747 doi: 10.1215/00182702-9414747
![]() |
[4] | Bos F (2009) The National Accounts as a Tool for Analysis and Policy: In View of History, Economic Theory and Data Compilation Issue. |
[5] | Boskin MJ, Dulberger ER, Gordon RJ, et al. (1996) Toward a more accurate measure of the cost of living: final report to the Senate Finance Committee, Advisory Commission to Study the Consumer Price Index, United States Congress, Washington D.C. Available from: https://www.ssa.gov/history/reports/boskinrpt.html. |
[6] | Centraal Bureau voor de Statistiek, Statistics Netherlands (1953) Nationale jaarrekeningen 1948–1950, CBS: Voorburg. |
[7] |
Comim F (2001) Richard Stone and measurement criteria for national accounts. Hist Polit Econ 33: 213–234. https://doi.org/10.1215/00182702-33-Suppl_1-213 doi: 10.1215/00182702-33-Suppl_1-213
![]() |
[8] |
Coyle D (2017) The future of the national accounts: Statistics and the democratic conversation. Rev Income Wealth 63: S223–237. https://doi.org/10.1111/roiw.12333 doi: 10.1111/roiw.12333
![]() |
[9] | de Jonge E (2020) Communicating uncertainties in official statistics—A review of communication methods. Available from: https://ec.europa.eu/eurostat/documents/3888793/12135507/KS-TC-20-011-EN-N.pdf/b2ee60fe-ed5b-ad3e-05bd-56f6b87dfec0?t = 1609752126728. |
[10] |
Du Rietz S (2024) Accounting for GDP—A study of epistemic strategies when calculating the quarterly economy. Account Organ Soc 112: 101522. https://doi.org/10.1016/j.aos.2023.101522 doi: 10.1016/j.aos.2023.101522
![]() |
[11] |
Fariss CJ, Anders T, Markowitz JN, et al. (2022) New estimates of over 500 years of historic GDP and population data. J Confl Resolut 66: 553–591. https://doi.org/10.1177/00220027211054432 doi: 10.1177/00220027211054432
![]() |
[12] |
Feldstein M (2017) Underestimating the real growth of GDP, personal income, and productivity. J Econ Perspect 31: 145–164. https://doi.org/10.1257/jep.31.2.145 doi: 10.1257/jep.31.2.145
![]() |
[13] |
Goolsbee AD, Klenow PJ (2018) Internet rising, prices falling: Measuring inflation in a world of e-commerce. AEA papers and proceedings 108: 488–492. https://doi.org/10.1257/pandp.2018103 doi: 10.1257/pandp.2018103
![]() |
[14] | Grassman S (1983) Comments, In: von Furstenberg, G.M. (ed.), International money and credit: the policy rules, IMF, Washington DC, 248–252. https://doi.org/10.5089/9780939934270.071 |
[15] | Griliches Z (1994) Productivity, R&D, and the Data Constraint. Am Econ Rev 84: 1–23. |
[16] | Guberek T (2019) Data Dilemmas: The Science and Politics of Communicating Uncertainty in Human Rights Information, PhD thesis University of Michigan: Ann Arbor. |
[17] | Harchaoui TK, Kaci M, Maynard JP, et al. (2004) The Statistics Canada Productivity Program: Methodology 2000, Statistics Canada, Ontario. |
[18] |
Hu Y, Yao J (2022) Illuminating economic growth. J Econom 228: 359–378. https://doi.org/10.1016/j.jeconom.2021.05.007 doi: 10.1016/j.jeconom.2021.05.007
![]() |
[19] |
Indaco A (2020) From twitter to GDP: Estimating economic activity from social media. Reg Sci Urban Econ 85. https://doi.org/10.1016/j.regsciurbeco.2020.103591 doi: 10.1016/j.regsciurbeco.2020.103591
![]() |
[20] | International Monetary Fund (1983) Statistical asymmetry in global current account balances, In: World Economic Outlook, IMF, Washington DC, 16–17. |
[21] | International Monetary Fund (1987) Report on the World Current Account Discrepancy. IMF, Washington, DC. |
[22] | International Monetary Fund (1992) Report on the Measurement of International Capital Flows. IMF, Washington, DC. |
[23] | Jerven M (2013) Poor Numbers: How We Are Misled by African Development Statistics and What to Do about It, Cornell University Press: Ithaca. |
[24] | Kenessey Z (1997) A perspective on the accuracy of economic observations. Int Stat Rev 65: 247–259. |
[25] | Knibbe M (2019) Macroeconomic measurement versus macroeconomic theory, London: Routledge. https://doi.org/10.4324/9781351136709 |
[26] | Kuznets S (1941) National Income and its composition, 1918–1938, NBER: New York. |
[27] |
Kuznets S (1950) Review of On the Accuracy of Economic Observations by Oskar Morgenstern. J Am Stat Assoc 45: 576–579. https://doi.org/10.1080/01621459.1950.10501149 doi: 10.1080/01621459.1950.10501149
![]() |
[28] | Linsi L, Tanaka S, Giumelli F, et al. (2023) Measuring the unmeasurable: The politics of guestimates, 2022 International Political Economy Society Conference, Pittsburg. |
[29] |
Manski CF (2011) Policy analysis with incredible certitude. Econ J 121: F261–F289. https://doi.org/10.1111/j.1468-0297.2011.02457.x doi: 10.1111/j.1468-0297.2011.02457.x
![]() |
[30] |
Manski CF (2015) Communicating uncertainty in official economic statistics: An appraisal fifty years after Morgenstern. J Econ Lit 53: 631–653. http://dx.doi.org/10.1257/jel.53.3.631 doi: 10.1257/jel.53.3.631
![]() |
[31] |
Manski CF (2020) The lure of incredible certitude. Econ Philos 36: 216–245. https://doi.org/10.1017/S0266267119000105 doi: 10.1017/S0266267119000105
![]() |
[32] |
Matolcsy G, Nagy M, Palotai D, et al. (2020) Inflation in the digital age: Inflation measurement and bias in the 21st Century. Financ Econ Rev 19: 5–36. https://doi.org/10.33893/FER.19.1.536 doi: 10.33893/FER.19.1.536
![]() |
[33] |
Meader R, Tily G (2008) Monitoring the quality of the National Accounts. Econ Lab Market Rev 2: 24–33. https://doi.org/10.1057/elmr.2008.39 doi: 10.1057/elmr.2008.39
![]() |
[34] |
Meng XL (2018) Statistical paradises and paradoxes in big data: law of large populations, big data paradox, and the 2016 us presidential election. Ann Appl Stat 12: 685–726. https://doi.org/10.1214/18-AOAS1161SF doi: 10.1214/18-AOAS1161SF
![]() |
[35] | Mitchell WC, King WI, Macaulay FR (1922) Income in the United States, Its Amount and Distribution, 1909–1919: Detailed report, Brace: Harcourt. |
[36] | Morgenstern O (1950) On the Accuracy of Economic Observations, Princeton University Press: Princeton. |
[37] | Morgenstern O (1963) On the Accuracy of Economic Observations, (2nd completely revised edition), Princeton University Press: Princeton. |
[38] | Moulton BR (2018) The measurement of output, prices, and productivity: What's Changed Since the Boskin Commission?, The Hutchins Center on Fiscal and Monetary Policy, Brookings Institution: Washington, DC. |
[39] |
Nordhaus W, Chen XI (2015) A sharper image? Estimates of the precision of nighttime lights as a proxy for economic statistics. J Econ Geogr 15: 217–246. https://doi.org/10.1093/jeg/lbu010 doi: 10.1093/jeg/lbu010
![]() |
[40] | O'Brien ES (1998) Contested accounts: the evolution of the meaning and measurement of national income, PhD thesis University of Notre Dame: Notre Dame, Indiana. |
[41] | Obstfeld MO, Hemmati M, Milesi-Ferretti GM, et al. (2015) The choice of numeraire matters when calculating world GDP growth. |
[42] | Reiss J (2008) Error in Economics: Towards a More Evidence-Based Methodology, Routledge. |
[43] |
Stone R, Champernowne DG, Meade JE (1942) The precision of national income estimates. Rev Econ Stud 9: 111–125. https://doi.org/10.2307/2967664 doi: 10.2307/2967664
![]() |
[44] |
Tiozzo-Pezzoli L, Tosetti E (2022) Seismonomics: Listening to the heartbeat of the economy. J R Stat Soc Ser A-Stat Soc 185: S288–S309. https://doi.org/10.1111/rssa.12912 doi: 10.1111/rssa.12912
![]() |
[45] | van Bergeijk PAG (2013) Earth Economics: An Introduction to Demand Management, Long-Run Growth and Global Economic Governance, Edward Elgar: Cheltenham. |
[46] | van Bergeijk PAG (2024) On the inaccuracies of economic observations: Why and How We Could Do Better Edward Elgar: Cheltenham. |
[47] |
van Delden A, Scholtus S, Burger J, et al. (2023) Accuracy of Estimated Ratios as Affected by Dynamic Classification Errors. J Surv Stat Methodol 11: 942–66. https://doi.org/10.1093/jssam/smac015 doi: 10.1093/jssam/smac015
![]() |
[48] |
van der Bles AM, van der Linden S, Freeman ALJ et al. (2019) Communicating uncertainty about facts, numbers and science. R Soc Open Sci 6: 181870. https://doi.org/10.1098/rsos.181870 doi: 10.1098/rsos.181870
![]() |
1. | M. Nagy, Adel Fahad Alrasheedi, Behnaz Ghoraani, Estimations of Generalized Exponential Distribution Parameters Based on Type I Generalized Progressive Hybrid Censored Data, 2022, 2022, 1748-6718, 1, 10.1155/2022/8058473 | |
2. | M. Nagy, Adel Fahad Alrasheedi, Muye Pang, Classical and Bayesian Inference Using Type-II Unified Progressive Hybrid Censored Samples for Pareto Model, 2022, 2022, 1754-2103, 1, 10.1155/2022/2073067 | |
3. | M. Nagy, M. H. Abu-Moussa, Adel Fahad Alrasheedi, A. Rabie, Expected Bayesian estimation for exponential model based on simple step stress with Type-I hybrid censored data, 2022, 19, 1551-0018, 9773, 10.3934/mbe.2022455 | |
4. | M. Nagy, Expected Bayesian estimation based on generalized progressive hybrid censored data for Burr-XII distribution with applications, 2024, 14, 2158-3226, 10.1063/5.0184910 | |
5. | Magdy Nagy, Mohamed Ahmed Mosilhy, Ahmed Hamdi Mansi, Mahmoud Hamed Abu-Moussa, An Analysis of Type-I Generalized Progressive Hybrid Censoring for the One Parameter Logistic-Geometry Lifetime Distribution with Applications, 2024, 13, 2075-1680, 692, 10.3390/axioms13100692 | |
6. | Mahmoud M. Abdelwahab, Anis Ben Ghorbal, Amal S. Hassan, Mohammed Elgarhy, Ehab M. Almetwally, Atef F. Hashem, Classical and Bayesian Inference for the Kavya–Manoharan Generalized Exponential Distribution under Generalized Progressively Hybrid Censored Data, 2023, 15, 2073-8994, 1193, 10.3390/sym15061193 |
Algorithm 1 MCMC method. |
Step 1, start with λ(0)=ˆλML and μ(0)=ˆμML |
Step 2, set i=1 |
Step 3, Generate λ(i)∼GammaDist.[D∗+a,W(μ(i−1)|x_)+b1]=π∗1(λ|μ(i−1);x_) |
Step 4, Generate a proposal μ(∗) from N(μ(i−1),V(μ)) |
Step 5, Calculate the acceptance probabilities dμ=min[1,π∗2(μ(∗)|λ(i−1))π∗1(μ(i−1)|λ(i−1))] |
Step 6, Generate u1 that follows a U(0,1) distribution. If u1≤dμ, set μ(i)=μ(∗); otherwise, set μ(i)=μ(i−1) |
Step 7, set i=i+1, repeat steps 3 to 7, N times and obtain (λ(j),μ(j)), j=1,2,...,N. |
Step 8, Remove the first B values for λ and μ, which is the burn-in period of λ(j) and μ(j), respectively, where j=1,2,...,N−B. |
IP | NIP | |||||||
Sch. | j | ρ | ˆXρ:R∗j | ET interval | HPD interval | ˆXρ:R∗j | ET interval | HPD interval |
1 | 3 | 1 | 4.824 | (1.322, 21.783) | (1.214, 17.062) | 6.410 | (1.324, 23.275) | (1.214, 18.034) |
2 | 10.634 | (2.417, 42.868) | (1.319, 34.499) | 14.202 | (2.429, 46.302) | (1.308, 36.810) | ||
3 | 22.254 | (5.271, 86.933) | (2.348, 70.530) | 29.787 | (5.289, 94.280) | (2.274, 75.524) | ||
7 | 1 | 5.914 | (5.943, 12.764) | (5.908, 11.190) | 7.639 | (5.944, 13.261) | (5.908, 11.514) | |
2 | 7.367 | (6.254, 17.586) | (5.939, 15.267) | 9.587 | (6.258, 18.558) | (5.935, 15.923) | ||
3 | 9.027 | (6.817, 22.790) | (6.182, 19.570) | 11.814 | (6.821, 24.302) | (6.071, 20.612) | ||
4 | 10.964 | (7.581, 28.762) | (6.654, 24.889) | 14.411 | (7.581, 30.909) | (6.608, 26.363) | ||
5 | 13.288 | (8.553, 35.920) | (7.294, 31.039) | 17.528 | (8.544, 38.832) | (7.213, 33.049) | ||
6 | 16.192 | (9.782, 44.951) | (8.125, 38.766) | 21.424 | (9.761, 48.820) | (8.000, 41.448) | ||
7 | 20.066 | (11.390, 57.239) | (9.351, 48.369) | 26.619 | (11.351, 62.390) | (9.026, 52.794) | ||
8 | 25.877 | (13.657, 76.426) | (10.679, 65.357) | 34.412 | (13.592, 83.499) | (10.421, 70.278) | ||
9 | 37.497 | (17.494,118.537) | (12.895, 99.972) | 49.997 | (17.400,129.445) | (12.532,107.555) | ||
2 | 3 | 1 | 4.924 | (1.330, 21.776) | (1.214, 17.251) | 6.488 | (1.332, 22.842) | (1.214, 17.983) |
2 | 10.886 | (2.506, 42.386) | (1.343, 34.584) | 14.399 | (2.526, 44.762) | (1.337, 36.266) | ||
3 | 22.809 | (5.601, 85.629) | (5.198, 69.693) | 30.221 | (5.656, 90.660) | (5.227, 73.313) | ||
6 | 1 | 8.082 | (5.365, 25.811) | (5.250, 21.286) | 10.524 | (5.367, 26.877) | (5.250, 22.019) | |
2 | 14.044 | (6.541, 46.422) | (5.379, 38.619) | 18.435 | (6.562, 48.797) | (5.372, 40.302) | ||
3 | 25.967 | (9.637, 89.664) | (9.233, 73.728) | 34.256 | (9.691, 94.695) | (9.262, 77.348) | ||
9 | 1 | 10.305 | (10.188, 22.456) | (10.120, 19.742) | 13.284 | (10.191, 23.096) | (10.120, 20.181) | |
2 | 13.285 | (10.826, 32.161) | (10.192, 28.030) | 17.239 | (10.837, 33.440) | (10.190, 28.937) | ||
3 | 17.260 | (12.126, 44.641) | (12.105, 38.397) | 22.513 | (12.152, 46.768) | (10.856, 39.936) | ||
4 | 23.220 | (14.248, 63.813) | (12.029, 55.213) | 30.425 | (14.288, 67.225) | (11.978, 57.679) | ||
5 | 35.144 | (18.060,105.916) | (14.149, 90.288) | 46.246 | (18.126,111.946) | (14.055, 94.654) | ||
3 | 3 | 1 | 5.061 | (1.335, 22.283) | (1.214, 17.716) | 6.661 | (1.337, 23.291) | (1.214, 18.425) |
2 | 11.226 | (2.572, 43.235) | (1.356, 35.439) | 14.832 | (2.597, 45.441) | (1.351, 37.039) | ||
3 | 23.556 | (5.834, 87.257) | (2.664, 72.209) | 31.172 | (5.910, 91.905) | (2.639, 75.613) | ||
6 | 1 | 8.219 | (5.370, 26.318) | (5.250, 21.752) | 10.697 | (5.372, 27.327) | (5.250, 22.460) | |
2 | 14.384 | (6.607, 47.271) | (5.391, 39.474) | 18.867 | (6.632, 49.477) | (5.386, 41.075) | ||
3 | 26.714 | (9.870, 91.293) | (6.612, 75.361) | 35.207 | (9.945, 95.940) | (6.674, 79.648) | ||
9 | 1 | 26.714 | (9.870, 91.293) | (9.142, 75.361) | 15.580 | (10.255, 32.209) | (10.133, 27.343) | |
2 | 18.205 | (11.490, 52.153) | (10.274, 44.357) | 23.750 | (11.515, 54.360) | (10.269, 45.957) | ||
3 | 30.536 | (14.752, 96.175) | (11.495, 80.244) | 40.090 | (14.828,100.823) | (11.514, 83.663) |
IP | NIP | ||||||
Sch. | s | ˆYs:N | ET interval | HPD interval | ˆYs:N | ET interval | HPD interval |
1 | 1 | 0.704 | (0.016, 2.927) | (0.000, 2.255) | 0.739 | (0.016, 3.139) | (0.000, 2.393) |
2 | 0.972 | (0.143, 4.811) | (0.013, 3.858) | 1.014 | (0.144, 5.212) | (0.012, 4.127) | |
3 | 1.314 | (0.361, 6.671) | (0.114, 5.470) | 1.381 | (0.362, 7.270) | (0.106, 5.878) | |
4 | 1.760 | (0.668, 9.119) | (0.299, 7.574) | 1.861 | (0.668, 9.976) | (0.281, 8.162) | |
5 | 2.216 | (1.036, 11.675) | (0.545, 9.782) | 2.356 | (1.032, 12.810) | (0.514, 10.566) | |
6 | 2.696 | (1.457, 14.399) | (0.842, 12.142) | 2.878 | (1.448, 15.838) | (0.794, 13.139) | |
7 | 3.481 | (2.039, 18.751) | (1.237, 15.844) | 3.724 | (2.023, 20.644) | (1.169, 17.159) | |
8 | 4.352 | (2.726, 23.618) | (1.717, 20.008) | 4.666 | (2.702, 26.033) | (1.622, 21.689) | |
9 | 5.356 | (3.544, 29.252) | (2.293, 24.833) | 5.753 | (3.509, 32.275) | (2.167, 26.942) | |
10 | 9.350 | (5.264, 50.149) | (3.233, 41.790) | 9.952 | (5.218, 54.977) | (3.068, 45.151) | |
2 | 1 | 0.722 | (0.017, 2.926) | (0.000, 2.282) | 0.750 | (0.017, 3.077) | (0.000, 2.386) |
2 | 0.978 | (0.154, 4.751) | (0.016, 3.865) | 1.060 | (0.156, 5.028) | (0.016, 4.061) | |
3 | 1.308 | (0.391, 6.536) | (0.134, 5.450) | 1.423 | (0.396, 6.943) | (0.131, 5.742) | |
4 | 1.738 | (0.727, 8.892) | (0.350, 7.520) | 1.898 | (0.734, 9.468) | (0.341, 7.938) | |
5 | 2.172 | (1.132, 11.338) | (0.638, 9.684) | 2.382 | (1.140, 12.097) | (0.622, 10.237) | |
6 | 2.627 | (1.596, 13.939) | (0.984, 11.990) | 2.890 | (1.606, 14.898) | (0.959, 12.690) | |
7 | 3.380 | (2.238, 18.128) | (1.444, 15.628) | 3.726 | (2.249, 19.387) | (1.408, 16.549) | |
8 | 4.213 | (3.000, 22.800) | (2.003, 19.709) | 4.650 | (3.011, 24.402) | (1.954, 20.885) | |
9 | 5.168 | (3.905, 28.199) | (2.675, 24.436) | 5.714 | (3.916, 30.202) | (2.608, 25.909) | |
10 | 9.146 | (5.795, 48.785) | (3.750, 41.359) | 10.042 | (5.814, 52.007) | (3.667, 43.723) | |
3 | 1 | 0.748 | (0.017, 2.998) | (0.000, 2.348) | 0.775 | (0.018, 3.142) | (0.000, 2.449) |
2 | 1.042 | (0.162, 4.847) | (0.018, 3.964) | 1.051 | (0.164, 5.104) | (0.017, 4.150) | |
3 | 1.386 | (0.412, 6.650) | (0.146, 5.579) | 1.405 | (0.419, 7.024) | (0.144, 5.854) | |
4 | 1.836 | (0.768, 9.030) | (0.380, 7.686) | 1.867 | (0.779, 9.557) | (0.374, 8.077) | |
5 | 2.288 | (1.196, 11.496) | (0.691, 9.887) | 2.335 | (1.211, 12.187) | (0.680, 10.403) | |
6 | 2.761 | (1.690, 14.117) | (1.066, 12.229) | 2.825 | (1.708, 14.987) | (1.050, 12.881) | |
7 | 3.551 | (2.371, 18.349) | (1.564, 15.931) | 3.637 | (2.394, 19.492) | (1.541, 16.788) | |
8 | 4.418 | (3.181, 23.064) | (2.170, 20.083) | 4.534 | (3.209, 24.515) | (2.137, 21.175) | |
9 | 5.414 | (4.142, 28.510) | (2.897, 24.888) | 5.563 | (4.176, 30.322) | (2.855, 26.255) | |
10 | 9.635 | (6.145, 49.504) | (4.051, 42.221) | 9.839 | (6.198, 52.438) | (4.002, 44.426) |
Bayesian | |||||||||
{ˆλBS | {ˆλBL | {ˆλBE | |||||||
Sch. | T | (n,m,k) | ˆλML | IP | NIP | IP | NIP | IP | NIP |
MSE | |||||||||
Sch−I | T=0.3 | (30, 20, 15) | 0.5082 | 0.0244 | 0.5305 | 0.0239 | 0.3282 | 0.0243 | 0.3739 |
(40, 20, 15) | 0.5186 | 0.0192 | 0.5693 | 0.0187 | 0.3517 | 0.0190 | 0.4026 | ||
(60, 30, 20) | 0.4127 | 0.0173 | 0.4355 | 0.0170 | 0.2675 | 0.0171 | 0.3403 | ||
T=0.7 | (30, 20, 15) | 0.2879 | 0.0259 | 0.2666 | 0.0252 | 0.2114 | 0.0255 | 0.2243 | |
(40, 20, 15) | 0.6400 | 0.0203 | 0.6240 | 0.0199 | 0.3760 | 0.0202 | 0.4454 | ||
(60, 30, 20) | 0.2110 | 0.0172 | 0.2007 | 0.0170 | 0.1646 | 0.0172 | 0.1708 | ||
T=1.5 | (30, 20, 15) | 0.2843 | 0.0250 | 0.2671 | 0.0242 | 0.2085 | 0.0245 | 0.2198 | |
(40, 20, 15) | 0.5891 | 0.0226 | 0.5973 | 0.0222 | 0.3726 | 0.0225 | 0.4423 | ||
(60, 30, 20) | 0.2528 | 0.0175 | 0.2440 | 0.0171 | 0.1921 | 0.0172 | 0.2036 | ||
Sch−II | T=0.3 | (30, 20, 15) | 0.5166 | 0.0252 | 0.5284 | 0.0245 | 0.3486 | 0.0250 | 0.3869 |
(40, 20, 15) | 0.5489 | 0.0197 | 0.5772 | 0.0194 | 0.3644 | 0.0197 | 0.4159 | ||
(60, 30, 20) | 0.3080 | 0.0174 | 0.3002 | 0.0172 | 0.2285 | 0.0174 | 0.2459 | ||
T=0.7 | (30, 20, 15) | 0.3489 | 0.0255 | 0.3314 | 0.0247 | 0.2473 | 0.0250 | 0.2673 | |
(40, 20, 15) | 0.5221 | 0.0191 | 0.5308 | 0.0187 | 0.3333 | 0.0190 | 0.3778 | ||
(60, 30, 20) | 0.2269 | 0.0164 | 0.2135 | 0.0160 | 0.1734 | 0.0162 | 0.1794 | ||
T=1.5 | (30, 20, 15) | 0.3369 | 0.0265 | 0.3188 | 0.0256 | 0.2451 | 0.0259 | 0.2584 | |
(40, 20, 15) | 0.6190 | 0.0205 | 0.6676 | 0.0198 | 0.3925 | 0.0200 | 0.4631 | ||
(60, 30, 20) | 0.2130 | 0.0177 | 0.2087 | 0.0173 | 0.1658 | 0.0174 | 0.1737 | ||
Sch−III | T=0.3 | (30, 20, 15) | 0.5166 | 0.0252 | 0.5284 | 0.0245 | 0.3486 | 0.0250 | 0.3869 |
(40, 20, 15) | 1.4205 | 0.0173 | 2.3081 | 0.0169 | 0.7138 | 0.0171 | 1.1274 | ||
(60, 30, 20) | 0.3416 | 0.0162 | 0.3652 | 0.0159 | 0.2586 | 0.0161 | 0.2772 | ||
T=0.7 | (30, 20, 15) | 0.5049 | 0.0246 | 0.5692 | 0.0238 | 0.3290 | 0.0241 | 0.4095 | |
(40, 20, 15) | 1.2471 | 0.0183 | 1.7174 | 0.0179 | 0.6258 | 0.0181 | 0.9441 | ||
(60, 30, 20) | 0.3569 | 0.0152 | 0.3705 | 0.0149 | 0.2577 | 0.0151 | 0.2792 | ||
T=1.5 | (30, 20, 15) | 0.4781 | 0.0246 | 0.5283 | 0.0238 | 0.3279 | 0.0241 | 0.3805 | |
(40, 20, 15) | 1.4825 | 0.0182 | 2.0789 | 0.0179 | 0.6943 | 0.0181 | 1.0823 | ||
(60, 30, 20) | 0.3832 | 0.0164 | 0.4044 | 0.0161 | 0.2737 | 0.0163 | 0.3012 | ||
EB | |||||||||
Sch−I | T=0.3 | (30, 20, 15) | 0.1962 | 0.0036 | 0.1983 | 0.0069 | 0.1024 | 0.0121 | 0.0855 |
(40, 20, 15) | 0.1816 | 0.0052 | 0.1950 | 0.0036 | 0.0900 | 0.0079 | 0.0715 | ||
(60, 30, 20) | 0.1219 | 0.0057 | 0.1268 | 0.0019 | 0.0649 | 0.0057 | 0.0502 | ||
T=0.7 | (30, 20, 15) | 0.1114 | 0.0075 | 0.0936 | 0.0029 | 0.0436 | 0.0080 | 0.0274 | |
(40, 20, 15) | 0.2209 | 0.0041 | 0.2048 | 0.0046 | 0.1182 | 0.0089 | 0.1086 | ||
(60, 30, 20) | 0.0984 | 0.0019 | 0.0884 | 0.0054 | 0.0519 | 0.0090 | 0.0403 | ||
T=1.5 | (30, 20, 15) | 0.1340 | 0.0092 | 0.1151 | 0.0012 | 0.0662 | 0.0063 | 0.0516 | |
(40, 20, 15) | 0.1950 | 0.0010 | 0.1840 | 0.0077 | 0.1037 | 0.0119 | 0.0935 | ||
(60, 30, 20) | 0.1235 | 0.0052 | 0.1125 | 0.0021 | 0.0748 | 0.0058 | 0.0647 | ||
Sch−II | T=0.3 | (30, 20, 15) | 0.2021 | 0.0034 | 0.2015 | 0.0070 | 0.1070 | 0.0122 | 0.0894 |
(40, 20, 15) | 0.1772 | 0.0006 | 0.1840 | 0.0079 | 0.0827 | 0.0122 | 0.0649 | ||
(60, 30, 20) | 0.1107 | 0.0002 | 0.1118 | 0.0072 | 0.0542 | 0.0109 | 0.0379 | ||
T=0.7 | (30, 20, 15) | 0.1516 | 0.0109 | 0.1333 | 0.0007 | 0.0785 | 0.0044 | 0.0645 | |
(40, 20, 15) | 0.2083 | 0.0036 | 0.2028 | 0.0049 | 0.1182 | 0.0091 | 0.1067 | ||
(60, 30, 20) | 0.1205 | 0.0051 | 0.1060 | 0.0021 | 0.0684 | 0.0057 | 0.0573 | ||
T=1.5 | (30, 20, 15) | 0.1597 | 0.0103 | 0.1411 | 0.0001 | 0.0889 | 0.0051 | 0.0757 | |
(40, 20, 15) | 0.2560 | 0.0116 | 0.2477 | 0.0030 | 0.1533 | 0.0012 | 0.1453 | ||
(60, 30, 20) | 0.1101 | 0.0089 | 0.1001 | 0.0016 | 0.0636 | 0.0020 | 0.0529 | ||
Sch−III | T=0.3 | (30, 20, 15) | 0.1928 | 0.0034 | 0.2015 | 0.0070 | 0.1070 | 0.0122 | 0.0894 |
(40, 20, 15) | 0.3861 | 0.0032 | 0.4732 | 0.0048 | 0.2402 | 0.0088 | 0.2642 | ||
(60, 30, 20) | 0.1597 | 0.0022 | 0.1710 | 0.0046 | 0.1106 | 0.0081 | 0.1002 | ||
T=0.7 | (30, 20, 15) | 0.1877 | 0.0107 | 0.1846 | 0.0008 | 0.1130 | 0.0040 | 0.1052 | |
(40, 20, 15) | 0.3373 | 0.0014 | 0.4115 | 0.0066 | 0.2144 | 0.0106 | 0.2268 | ||
(60, 30, 20) | 0.1610 | 0.0039 | 0.1703 | 0.0030 | 0.1106 | 0.0064 | 0.1009 | ||
T=1.5 | (30, 20, 15) | 0.1982 | 0.0107 | 0.1950 | 0.0007 | 0.1223 | 0.0041 | 0.1140 | |
(40, 20, 15) | 0.3659 | 0.0018 | 0.4368 | 0.0062 | 0.2275 | 0.0103 | 0.2443 | ||
(60, 30, 20) | 0.1717 | 0.0001 | 0.1788 | 0.0068 | 0.1167 | 0.0103 | 0.1076 |
Bayesian | |||||||||
ˆμBS | ˆμBL | ˆμBE | |||||||
Sch. | T | (n,m,k) | ˆμML | IP | NIP | IP | NIP | IP | NIP |
MSE | |||||||||
Sch−I | T=0.3 | (30, 20, 15) | 0.0410 | 0.0066 | 0.0361 | 0.0065 | 0.0337 | 0.0064 | 0.0320 |
(40, 20, 15) | 0.0307 | 0.0051 | 0.0270 | 0.0051 | 0.0257 | 0.0050 | 0.0250 | ||
(60, 30, 20) | 0.0236 | 0.0046 | 0.0214 | 0.0046 | 0.0207 | 0.0046 | 0.0203 | ||
T=0.7 | (30, 20, 15) | 0.0287 | 0.0070 | 0.0246 | 0.0068 | 0.0235 | 0.0066 | 0.0229 | |
(40, 20, 15) | 0.0304 | 0.0054 | 0.0259 | 0.0053 | 0.0248 | 0.0051 | 0.0239 | ||
(60, 30, 20) | 0.0187 | 0.0047 | 0.0163 | 0.0046 | 0.0158 | 0.0046 | 0.0155 | ||
T=1.5 | (30, 20, 15) | 0.0301 | 0.0069 | 0.0257 | 0.0067 | 0.0246 | 0.0066 | 0.0238 | |
(40, 20, 15) | 0.0299 | 0.0060 | 0.0259 | 0.0059 | 0.0248 | 0.0058 | 0.0240 | ||
(60, 30, 20) | 0.0185 | 0.0047 | 0.0161 | 0.0046 | 0.0156 | 0.0046 | 0.0152 | ||
Sch-II | T=0.3 | (30, 20, 15) | 0.0459 | 0.0069 | 0.0409 | 0.0067 | 0.0382 | 0.0066 | 0.0364 |
(40, 20, 15) | 0.0310 | 0.0054 | 0.0272 | 0.0054 | 0.0259 | 0.0053 | 0.0253 | ||
(60, 30, 20) | 0.0215 | 0.0046 | 0.0190 | 0.0045 | 0.0184 | 0.0044 | 0.0180 | ||
T=0.7 | (30, 20, 15) | 0.0287 | 0.0066 | 0.0248 | 0.0066 | 0.0237 | 0.0064 | 0.0228 | |
(40, 20, 15) | 0.0256 | 0.0052 | 0.0220 | 0.0051 | 0.0210 | 0.0050 | 0.0202 | ||
(60, 30, 20) | 0.0176 | 0.0042 | 0.0153 | 0.0041 | 0.0148 | 0.0041 | 0.0144 | ||
T=1.5 | (30, 20, 15) | 0.0308 | 0.0069 | 0.0268 | 0.0067 | 0.0255 | 0.0066 | 0.0246 | |
(40, 20, 15) | 0.0279 | 0.0053 | 0.0243 | 0.0053 | 0.0231 | 0.0052 | 0.0221 | ||
(60, 30, 20) | 0.0161 | 0.0046 | 0.0140 | 0.0045 | 0.0136 | 0.0044 | 0.0133 | ||
Sch-III | T=0.3 | (30, 20, 15) | 0.0459 | 0.0069 | 0.0409 | 0.0067 | 0.0382 | 0.0066 | 0.0364 |
(40, 20, 15) | 0.0462 | 0.0046 | 0.0423 | 0.0046 | 0.0393 | 0.0046 | 0.0370 | ||
(60, 30, 20) | 0.0248 | 0.0043 | 0.0226 | 0.0042 | 0.0216 | 0.0042 | 0.0207 | ||
T=0.7 | (30, 20, 15) | 0.0350 | 0.0062 | 0.0304 | 0.0062 | 0.0286 | 0.0061 | 0.0272 | |
(40, 20, 15) | 0.0428 | 0.0051 | 0.0394 | 0.0050 | 0.0369 | 0.0049 | 0.0348 | ||
(60, 30, 20) | 0.0232 | 0.0041 | 0.0208 | 0.0040 | 0.0199 | 0.0040 | 0.0192 | ||
T=1.5 | (30, 20, 15) | 0.0401 | 0.0067 | 0.0354 | 0.0066 | 0.0333 | 0.0065 | 0.0318 | |
(40, 20, 15) | 0.0469 | 0.0050 | 0.0420 | 0.0050 | 0.0392 | 0.0049 | 0.0371 | ||
(60, 30, 20) | 0.0254 | 0.0045 | 0.0224 | 0.0044 | 0.0214 | 0.0043 | 0.0205 | ||
EB | |||||||||
Sch-I | T=0.3 | (30, 20, 15) | 0.0556 | 0.0107 | 0.0453 | 0.0083 | 0.0378 | 0.0038 | 0.0247 |
(40, 20, 15) | 0.0338 | 0.0057 | 0.0263 | 0.0039 | 0.0204 | 0.0006 | 0.0095 | ||
(60, 30, 20) | 0.0248 | 0.0047 | 0.0194 | 0.0032 | 0.0150 | 0.0003 | 0.0069 | ||
T=0.7 | (30, 20, 15) | 0.0335 | 0.0084 | 0.0246 | 0.0061 | 0.0194 | 0.0015 | 0.0096 | |
(40, 20, 15) | 0.0446 | 0.0077 | 0.0333 | 0.0059 | 0.0285 | 0.0025 | 0.0198 | ||
(60, 30, 20) | 0.0269 | 0.0064 | 0.0210 | 0.0050 | 0.0178 | 0.0021 | 0.0118 | ||
T=1.5 | (30, 20, 15) | 0.0426 | 0.0090 | 0.0324 | 0.0067 | 0.0273 | 0.0022 | 0.0181 | |
(40, 20, 15) | 0.0439 | 0.0092 | 0.0337 | 0.0074 | 0.0291 | 0.0041 | 0.0205 | ||
(60, 30, 20) | 0.0319 | 0.0063 | 0.0260 | 0.0048 | 0.0229 | 0.0020 | 0.0171 | ||
Sch-II | T=0.3 | (30, 20, 15) | 0.0592 | 0.0104 | 0.0480 | 0.0081 | 0.0403 | 0.0036 | 0.0272 |
(40, 20, 15) | 0.0350 | 0.0081 | 0.0258 | 0.0064 | 0.0200 | 0.0030 | 0.0093 | ||
(60, 30, 20) | 0.0262 | 0.0073 | 0.0200 | 0.0058 | 0.0157 | 0.0030 | 0.0077 | ||
T=0.7 | (30, 20, 15) | 0.0438 | 0.0082 | 0.0348 | 0.0059 | 0.0293 | 0.0015 | 0.0194 | |
(40, 20, 15) | 0.0426 | 0.0073 | 0.0339 | 0.0056 | 0.0291 | 0.0023 | 0.0203 | ||
(60, 30, 20) | 0.0305 | 0.0056 | 0.0224 | 0.0042 | 0.0192 | 0.0014 | 0.0133 | ||
T=1.5 | (30, 20, 15) | 0.0473 | 0.0086 | 0.0378 | 0.0062 | 0.0327 | 0.0018 | 0.0234 | |
(40, 20, 15) | 0.0494 | 0.0045 | 0.0384 | 0.0028 | 0.0335 | 0.0005 | 0.0248 | ||
(60, 30, 20) | 0.0239 | 0.0031 | 0.0184 | 0.0017 | 0.0153 | 0.0011 | 0.0095 | ||
Sch-III | T=0.3 | (30, 20, 15) | 0.0592 | 0.0104 | 0.0480 | 0.0081 | 0.0403 | 0.0036 | 0.0272 |
(40, 20, 15) | 0.0701 | 0.0073 | 0.0608 | 0.0057 | 0.0534 | 0.0026 | 0.0413 | ||
(60, 30, 20) | 0.0404 | 0.0066 | 0.0353 | 0.0051 | 0.0310 | 0.0024 | 0.0233 | ||
T=0.7 | (30, 20, 15) | 0.0516 | 0.0070 | 0.0422 | 0.0048 | 0.0360 | 0.0005 | 0.0252 | |
(40, 20, 15) | 0.0656 | 0.0084 | 0.0581 | 0.0068 | 0.0510 | 0.0037 | 0.0391 | ||
(60, 30, 20) | 0.0388 | 0.0054 | 0.0332 | 0.0040 | 0.0291 | 0.0013 | 0.0215 | ||
T=1.5 | (30, 20, 15) | 0.0561 | 0.0073 | 0.0464 | 0.0050 | 0.0402 | 0.0007 | 0.0296 | |
(40, 20, 15) | 0.0685 | 0.0077 | 0.0595 | 0.0061 | 0.0524 | 0.0030 | 0.0404 | ||
(60, 30, 20) | 0.0444 | 0.0082 | 0.0375 | 0.0068 | 0.0332 | 0.0041 | 0.0256 |
Bayesian | |||||||||
\widehat{S(t) }_{BS} | \widehat{S(t) }_{BL} | \widehat{S(t) }_{BE} | |||||||
Sch. | T | (n, m, k) | \widehat{S(t) }_{ML} | IP | NIP | IP | NIP | IP | NIP |
MSE | |||||||||
Sch-I | T=0.3 | (30, 20, 15) | 0.0005 | 3.90\times10^{-6} | 0.0016 | 3.90\times10^{-6} | 0.0014 | 2.60\times10^{-6} | 0.0003 |
(40, 20, 15) | 0.0010 | 3.90\times10^{-6} | 0.0026 | 3.90\times10^{-6} | 0.0025 | 1.30\times10^{-6} | 0.0004 | ||
(60, 30, 20) | 0.0007 | 3.90\times10^{-6} | 0.0016 | 3.90\times10^{-6} | 0.0014 | 2.60\times10^{-6} | 0.0004 | ||
T=0.7 | (30, 20, 15) | 0.0005 | 5.20\times10^{-6} | 0.0012 | 5.20\times10^{-6} | 0.0010 | 2.60\times10^{-6} | 0.0003 | |
(40, 20, 15) | 0.0007 | 3.90\times10^{-6} | 0.0014 | 3.90\times10^{-6} | 0.0014 | 2.60\times10^{-6} | 0.0004 | ||
(60, 30, 20) | 0.0003 | 5.20\times10^{-6} | 0.0007 | 5.20\times10^{-6} | 0.0007 | 2.60\times10^{-6} | 0.0003 | ||
T=1.5 | (30, 20, 15) | 0.0003 | 3.90\times10^{-6} | 0.0008 | 3.90\times10^{-6} | 0.0008 | 2.60\times10^{-6} | 0.0003 | |
(40, 20, 15) | 0.0005 | 5.20\times10^{-6} | 0.0012 | 5.20\times10^{-6} | 0.0012 | 2.60\times10^{-6} | 0.0004 | ||
(60, 30, 20) | 0.0003 | 5.20\times10^{-6} | 0.0005 | 5.20\times10^{-6} | 0.0005 | 2.60\times10^{-6} | 0.0001 | ||
Sch-II | T=0.3 | (30, 20, 15) | 0.0007 | 3.90\times10^{-6} | 0.0018 | 3.90\times10^{-6} | 0.0017 | 2.60\times10^{-6} | 0.0004 |
(40, 20, 15) | 0.0012 | 3.90\times10^{-6} | 0.0029 | 3.90\times10^{-6} | 0.0027 | 2.60\times10^{-6} | 0.0005 | ||
(60, 30, 20) | 0.0008 | 3.90\times10^{-6} | 0.0017 | 3.90\times10^{-6} | 0.0016 | 2.60\times10^{-6} | 0.0005 | ||
T=0.7 | (30, 20, 15) | 0.0005 | 5.20\times10^{-6} | 0.0010 | 5.20\times10^{-6} | 0.0010 | 2.60\times10^{-6} | 0.0004 | |
(40, 20, 15) | 0.0005 | 3.90\times10^{-6} | 0.0012 | 3.90\times10^{-6} | 0.0012 | 2.60\times10^{-6} | 0.0003 | ||
(60, 30, 20) | 0.0003 | 5.20\times10^{-6} | 0.0005 | 5.20\times10^{-6} | 0.0005 | 2.60\times10^{-6} | 0.0001 | ||
T=1.5 | (30, 20, 15) | 0.0004 | 5.20\times10^{-6} | 0.0008 | 5.20\times10^{-6} | 0.0008 | 2.60\times10^{-6} | 0.0003 | |
(40, 20, 15) | 0.0004 | 3.90\times10^{-6} | 0.0009 | 3.90\times10^{-6} | 0.0009 | 2.60\times10^{-6} | 0.0003 | ||
(60, 30, 20) | 0.0003 | 5.20\times10^{-6} | 0.0004 | 5.20\times10^{-6} | 0.0004 | 2.60\times10^{-6} | 0.0001 | ||
Sch-III | T=0.3 | (30, 20, 15) | 0.0007 | 3.90\times10^{-6} | 0.0018 | 3.90\times10^{-6} | 0.0017 | 2.60\times10^{-6} | 0.0004 |
(40, 20, 15) | 0.0007 | 2.60\times10^{-6} | 0.0017 | 2.60\times10^{-6} | 0.0016 | 1.30\times10^{-6} | 0.0004 | ||
(60, 30, 20) | 0.0004 | 3.90\times10^{-6} | 0.0008 | 3.90\times10^{-6} | 0.0008 | 2.60\times10^{-6} | 0.0003 | ||
T=0.7 | (30, 20, 15) | 0.0003 | 3.90\times10^{-6} | 0.0007 | 3.90\times10^{-6} | 0.0007 | 2.60\times10^{-6} | 0.0003 | |
(40, 20, 15) | 0.0007 | 3.90\times10^{-6} | 0.0017 | 3.90\times10^{-6} | 0.0016 | 1.30\times10^{-6} | 0.0004 | ||
(60, 30, 20) | 0.0003 | 3.90\times10^{-6} | 0.0007 | 3.90\times10^{-6} | 0.0007 | 2.60\times10^{-6} | 0.0001 | ||
T=1.5 | (30, 20, 15) | 0.0003 | 3.90\times10^{-6} | 0.0007 | 3.90\times10^{-6} | 0.0007 | 2.60\times10^{-6} | 0.0001 | |
(40, 20, 15) | 0.0008 | 3.90\times10^{-6} | 0.0018 | 3.90\times10^{-6} | 0.0017 | 1.30\times10^{-6} | 0.0004 | ||
(60, 30, 20) | 0.0003 | 3.90\times10^{-6} | 0.0007 | 3.90\times10^{-6} | 0.0007 | 2.60\times10^{-6} | 0.0001 | ||
EB | |||||||||
Sch-I | T=0.3 | (30, 20, 15) | 0.0070 | 0.0014 | 0.0270 | 0.0014 | 0.0260 | 0.0007 | 0.0014 |
(40, 20, 15) | 0.0120 | 0.0014 | 0.0350 | 0.0014 | 0.0340 | 0.0007 | 0.0003 | ||
(60, 30, 20) | 0.0090 | 0.0013 | 0.0250 | 0.0013 | 0.0250 | 0.0007 | 0.0004 | ||
T=0.7 | (30, 20, 15) | 0.0069 | 0.0014 | 0.0220 | 0.0013 | 0.0210 | 0.0007 | 0.0009 | |
(40, 20, 15) | 0.0073 | 0.0013 | 0.0230 | 0.0013 | 0.0230 | 0.0007 | 0.0007 | ||
(60, 30, 20) | 0.0049 | 0.0014 | 0.0150 | 0.0013 | 0.0150 | 0.0005 | 0.0003 | ||
T=1.5 | (30, 20, 15) | 0.0045 | 0.0012 | 0.0170 | 0.0012 | 0.0170 | 0.0008 | 0.0004 | |
(40, 20, 15) | 0.0069 | 0.0014 | 0.0220 | 0.0014 | 0.0220 | 0.0007 | 0.0001 | ||
(60, 30, 20) | 0.0032 | 0.0012 | 0.0120 | 0.0012 | 0.0120 | 0.0007 | 0.0008 | ||
Sch-II | T=0.3 | (30, 20, 15) | 0.0082 | 0.0014 | 0.0280 | 0.0014 | 0.0280 | 0.0007 | 0.0003 |
(40, 20, 15) | 0.0130 | 0.0014 | 0.0360 | 0.0014 | 0.0350 | 0.0007 | 0.0010 | ||
(60, 30, 20) | 0.0096 | 0.0014 | 0.0250 | 0.0014 | 0.0250 | 0.0007 | 0.0010 | ||
T=0.7 | (30, 20, 15) | 0.0055 | 0.0012 | 0.0190 | 0.0012 | 0.0190 | 0.0008 | 0.0010 | |
(40, 20, 15) | 0.0062 | 0.0013 | 0.0210 | 0.0013 | 0.0210 | 0.0007 | 0.0008 | ||
(60, 30, 20) | 0.0039 | 0.0013 | 0.0140 | 0.0013 | 0.0140 | 0.0007 | 0.0003 | ||
T=1.5 | (30, 20, 15) | 0.0045 | 0.0013 | 0.0170 | 0.0012 | 0.0160 | 0.0008 | 0.0003 | |
(40, 20, 15) | 0.0038 | 0.0012 | 0.0190 | 0.0012 | 0.0180 | 0.0008 | 0.0021 | ||
(60, 30, 20) | 0.0034 | 0.0013 | 0.0130 | 0.0013 | 0.0120 | 0.0007 | 0.0008 | ||
Sch-III | T=0.3 | (30, 20, 15) | 0.0082 | 0.0014 | 0.0280 | 0.0014 | 0.0280 | 0.0007 | 0.0003 |
(40, 20, 15) | 0.0074 | 0.0013 | 0.0260 | 0.0013 | 0.0260 | 0.0008 | 0.0025 | ||
(60, 30, 20) | 0.0055 | 0.0013 | 0.0170 | 0.0013 | 0.0170 | 0.0007 | 0.0010 | ||
T=0.7 | (30, 20, 15) | 0.0035 | 0.0013 | 0.0170 | 0.0012 | 0.0160 | 0.0008 | 0.0020 | |
(40, 20, 15) | 0.0070 | 0.0013 | 0.0260 | 0.0013 | 0.0260 | 0.0008 | 0.0027 | ||
(60, 30, 20) | 0.0041 | 0.0013 | 0.0150 | 0.0013 | 0.0150 | 0.0007 | 0.0018 | ||
T=1.5 | (30, 20, 15) | 0.0039 | 0.0012 | 0.0170 | 0.0012 | 0.0160 | 0.0008 | 0.0017 | |
(40, 20, 15) | 0.0080 | 0.0014 | 0.0270 | 0.0013 | 0.0260 | 0.0007 | 0.0020 | ||
(60, 30, 20) | 0.0042 | 0.0013 | 0.0150 | 0.0013 | 0.0150 | 0.0007 | 0.0018 |
Bayesian | |||||||||
\widehat{H(t)}_{BS} | \widehat{H(t)}_{BL} | \widehat{H(t)}_{BE} | |||||||
Sch. | T | (n, m, k) | \widehat{H(t) }_{ML} | IP | NIP | IP | NIP | IP | NIP |
MSE | |||||||||
Sch-I | T=0.3 | (30, 20, 15) | 0.0250 | 4.20\times10^{-5} | 0.0390 | 4.20\times10^{-5} | 0.0320 | 4.20\times10^{-5} | 0.0200 |
(40, 20, 15) | 0.0220 | 4.20\times10^{-5} | 0.0350 | 4.20\times10^{-5} | 0.0300 | 4.20\times10^{-5} | 0.0190 | ||
(60, 30, 20) | 0.0250 | 5.60\times10^{-5} | 0.0370 | 5.60\times10^{-5} | 0.0270 | 5.60\times10^{-5} | 0.0240 | ||
T=0.7 | (30, 20, 15) | 0.0110 | 5.60\times10^{-5} | 0.0130 | 5.60\times10^{-5} | 0.0130 | 7.00\times10^{-5} | 0.0095 | |
(40, 20, 15) | 0.0290 | 5.60\times10^{-5} | 0.0400 | 5.60\times10^{-5} | 0.0330 | 5.60\times10^{-5} | 0.0220 | ||
(60, 30, 20) | 0.0084 | 8.40\times10^{-5} | 0.0110 | 8.40\times10^{-5} | 0.0100 | 8.40\times10^{-5} | 0.0081 | ||
T=1.5 | (30, 20, 15) | 0.0120 | 7.00\times10^{-5} | 0.0150 | 7.00\times10^{-5} | 0.0140 | 7.00\times10^{-5} | 0.0110 | |
(40, 20, 15) | 0.0240 | 5.60\times10^{-5} | 0.0350 | 5.60\times10^{-5} | 0.0300 | 5.60\times10^{-5} | 0.0210 | ||
(60, 30, 20) | 0.0100 | 7.00\times10^{-5} | 0.0130 | 8.40\times10^{-5} | 0.0120 | 8.40\times10^{-5} | 0.0095 | ||
Sch-II | T=0.3 | (30, 20, 15) | 0.0260 | 4.20\times10^{-5} | 0.0390 | 4.20\times10^{-5} | 0.0340 | 5.60\times10^{-5} | 0.0220 |
(40, 20, 15) | 0.0220 | 4.20\times10^{-5} | 0.0340 | 4.20\times10^{-5} | 0.0300 | 4.20\times10^{-5} | 0.0190 | ||
(60, 30, 20) | 0.0120 | 5.60\times10^{-5} | 0.0170 | 5.60\times10^{-5} | 0.0150 | 5.60\times10^{-5} | 0.0110 | ||
T=0.7 | (30, 20, 15) | 0.0130 | 5.60\times10^{-5} | 0.0180 | 5.60\times10^{-5} | 0.0170 | 7.00\times10^{-5} | 0.0120 | |
(40, 20, 15) | 0.0190 | 5.60\times10^{-5} | 0.0280 | 5.60\times10^{-5} | 0.0250 | 5.60\times10^{-5} | 0.0160 | ||
(60, 30, 20) | 0.0086 | 7.00\times10^{-5} | 0.0110 | 7.00\times10^{-5} | 0.0110 | 8.40\times10^{-5} | 0.0081 | ||
T=1.5 | (30, 20, 15) | 0.0130 | 7.00\times10^{-5} | 0.0170 | 7.00\times10^{-5} | 0.0160 | 7.00\times10^{-5} | 0.0120 | |
(40, 20, 15) | 0.0260 | 4.20\times10^{-5} | 0.0420 | 4.20\times10^{-5} | 0.0350 | 5.60\times10^{-5} | 0.0230 | ||
(60, 30, 20) | 0.0076 | 7.00\times10^{-5} | 0.0100 | 7.00\times10^{-5} | 0.0096 | 7.00\times10^{-5} | 0.0074 | ||
Sch-III | T=0.3 | (30, 20, 15) | 0.0260 | 4.20\times10^{-5} | 0.0390 | 4.20\times10^{-5} | 0.0340 | 5.60\times10^{-5} | 0.0220 |
(40, 20, 15) | 0.0750 | 4.20\times10^{-5} | 0.2200 | 4.20\times10^{-5} | 0.1100 | 4.20\times10^{-5} | 0.0680 | ||
(60, 30, 20) | 0.0150 | 5.60\times10^{-5} | 0.0230 | 5.60\times10^{-5} | 0.0210 | 5.60\times10^{-5} | 0.0140 | ||
T=0.7 | (30, 20, 15) | 0.0260 | 5.60\times10^{-5} | 0.0430 | 5.60\times10^{-5} | 0.0340 | 5.60\times10^{-5} | 0.0240 | |
(40, 20, 15) | 0.0660 | 4.20\times10^{-5} | 0.1500 | 4.20\times10^{-5} | 0.0910 | 4.20\times10^{-5} | 0.0570 | ||
(60, 30, 20) | 0.0160 | 5.60\times10^{-5} | 0.0230 | 5.60\times10^{-5} | 0.0210 | 5.60\times10^{-5} | 0.0140 | ||
T=1.5 | (30, 20, 15) | 0.0250 | 5.60\times10^{-5} | 0.0430 | 5.60\times10^{-5} | 0.0340 | 5.60\times10^{-5} | 0.0230 | |
(40, 20, 15) | 0.0870 | 4.20\times10^{-5} | 0.2000 | 4.20\times10^{-5} | 0.1000 | 4.20\times10^{-5} | 0.0700 | ||
(60, 30, 20) | 0.0170 | 5.60\times10^{-5} | 0.0260 | 5.60\times10^{-5} | 0.0230 | 5.60\times10^{-5} | 0.0150 | ||
EB | |||||||||
Sch-I | T=0.3 | (30, 20, 15) | 0.0600 | 1.70\times10^{-4} | 0.0880 | 3.20\times10^{-4} | 0.0800 | 0.0027 | 0.0320 |
(40, 20, 15) | 0.0510 | 3.60\times10^{-4} | 0.0810 | 5.20\times10^{-4} | 0.0730 | 0.0028 | 0.0240 | ||
(60, 30, 20) | 0.0360 | 2.80\times10^{-5} | 0.0540 | 1.10\times10^{-4} | 0.0490 | 0.0024 | 0.0180 | ||
T=0.7 | (30, 20, 15) | 0.0330 | 3.80\times10^{-4} | 0.0400 | 5.20\times10^{-4} | 0.0370 | 0.0028 | 0.0110 | |
(40, 20, 15) | 0.0610 | 9.80\times10^{-5} | 0.0810 | 5.60\times10^{-5} | 0.0740 | 0.0024 | 0.0370 | ||
(60, 30, 20) | 0.0290 | 1.10\times10^{-5} | 0.0370 | 1.50\times10^{-4} | 0.0350 | 0.0024 | 0.0160 | ||
T=1.5 | (30, 20, 15) | 0.0400 | 2.40\times10^{-4} | 0.0480 | 9.80\times10^{-5} | 0.0450 | 0.0021 | 0.0200 | |
(40, 20, 15) | 0.0550 | 1.50\times10^{-4} | 0.0740 | 3.10\times10^{-4} | 0.0680 | 0.0025 | 0.0330 | ||
(60, 30, 20) | 0.0340 | 5.90\times10^{-4} | 0.0440 | 4.50\times10^{-4} | 0.0420 | 0.0017 | 0.0230 | ||
Sch-II | T=0.3 | (30, 20, 15) | 0.0640 | 3.40\times10^{-4} | 0.0920 | 4.90\times10^{-4} | 0.0840 | 0.0028 | 0.0350 |
(40, 20, 15) | 0.0510 | 3.50\times10^{-4} | 0.0780 | 5.00\times10^{-4} | 0.0700 | 0.0028 | 0.0230 | ||
(60, 30, 20) | 0.0330 | 1.40\times10^{-5} | 0.0490 | 1.40\times10^{-4} | 0.0450 | 0.0024 | 0.0140 | ||
T=0.7 | (30, 20, 15) | 0.0440 | 3.80\times10^{-4} | 0.0550 | 2.20\times10^{-4} | 0.0510 | 0.0021 | 0.0240 | |
(40, 20, 15) | 0.0550 | 4.20\times10^{-5} | 0.0770 | 1.10\times10^{-4} | 0.0720 | 0.0024 | 0.0340 | ||
(60, 30, 20) | 0.0330 | 4.90\times10^{-4} | 0.0410 | 3.50\times10^{-4} | 0.0390 | 0.0018 | 0.0190 | ||
T=1.5 | (30, 20, 15) | 0.0460 | 2.50\times10^{-4} | 0.0570 | 1.10\times10^{-4} | 0.0540 | 0.0021 | 0.0280 | |
(40, 20, 15) | 0.0670 | 4.20\times10^{-4} | 0.0920 | 2.80\times10^{-4} | 0.0850 | 0.0020 | 0.0450 | ||
(60, 30, 20) | 0.0280 | 1.30\times10^{-4} | 0.0370 | 1.10\times10^{-5} | 0.0350 | 0.0023 | 0.0160 | ||
Sch-III | T=0.3 | (30, 20, 15) | 0.0640 | 3.40\times10^{-4} | 0.0920 | 4.90\times10^{-4} | 0.0840 | 0.0028 | 0.0350 |
(40, 20, 15) | 0.1100 | 3.40\times10^{-4} | 0.2000 | 1.80\times10^{-4} | 0.1600 | 0.0021 | 0.0860 | ||
(60, 30, 20) | 0.0460 | 3.90\times10^{-4} | 0.0700 | 2.40\times10^{-4} | 0.0650 | 0.0020 | 0.0340 | ||
T=0.7 | (30, 20, 15) | 0.0560 | 1.30\times10^{-4} | 0.0770 | 1.10\times10^{-5} | 0.0710 | 0.0024 | 0.0370 | |
(40, 20, 15) | 0.0970 | 2.90\times10^{-4} | 0.1700 | 1.40\times10^{-4} | 0.1400 | 0.0023 | 0.0740 | ||
(60, 30, 20) | 0.0460 | 3.60\times10^{-4} | 0.0680 | 2.10\times10^{-4} | 0.0640 | 0.0021 | 0.0330 | ||
T=1.5 | (30, 20, 15) | 0.0600 | 1.10\times10^{-4} | 0.0830 | 4.20\times10^{-5} | 0.0760 | 0.0024 | 0.0410 | |
(40, 20, 15) | 0.1100 | 8.40\times10^{-5} | 0.1800 | 7.00\times10^{-5} | 0.1500 | 0.0024 | 0.0810 | ||
(60, 30, 20) | 0.0500 | 5.70\times10^{-4} | 0.0730 | 4.20\times10^{-4} | 0.0680 | 0.0018 | 0.0370 |
\widehat{\lambda}_{B} | |||||||||||||
\widehat{\lambda}_{ML} | IP | NIP | |||||||||||
90\% | 95\% | 90\% | 95\% | 90\% | 95\% | ||||||||
T | (n, m, k) | AL | CP | AL | CP | AL | CP | AL | CP | AL | CP | AL | CP |
Sch. I | |||||||||||||
T=0.3 | (30, 20, 15) | 2.733 | 0.918 | 3.161 | 0.950 | 0.911 | 0.940 | 1.078 | 0.965 | 2.683 | 0.863 | 3.138 | 0.928 |
(40, 20, 15) | 2.871 | 0.930 | 3.309 | 0.945 | 0.828 | 0.947 | 0.986 | 0.970 | 2.810 | 0.879 | 3.317 | 0.925 | |
(60, 30, 20) | 2.135 | 0.907 | 2.544 | 0.941 | 0.769 | 0.948 | 0.920 | 0.969 | 2.098 | 0.867 | 2.511 | 0.922 | |
T=0.7 | (30, 20, 15) | 1.665 | 0.873 | 1.935 | 0.943 | 0.741 | 0.934 | 0.877 | 0.965 | 1.614 | 0.851 | 1.864 | 0.927 |
(40, 20, 15) | 2.012 | 0.924 | 2.417 | 0.935 | 0.674 | 0.945 | 0.803 | 0.964 | 1.956 | 0.877 | 2.360 | 0.892 | |
(60, 30, 20) | 1.393 | 0.878 | 1.638 | 0.946 | 0.623 | 0.931 | 0.737 | 0.969 | 1.355 | 0.856 | 1.596 | 0.918 | |
T=1.5 | (30, 20, 15) | 1.420 | 0.901 | 1.692 | 0.942 | 0.658 | 0.945 | 0.780 | 0.965 | 1.378 | 0.871 | 1.634 | 0.927 |
(40, 20, 15) | 1.748 | 0.931 | 2.067 | 0.945 | 0.602 | 0.946 | 0.708 | 0.965 | 1.707 | 0.864 | 2.015 | 0.907 | |
(60, 30, 20) | 1.208 | 0.907 | 1.461 | 0.940 | 0.554 | 0.937 | 0.656 | 0.965 | 1.173 | 0.889 | 1.420 | 0.913 | |
Sch. II | |||||||||||||
T=0.3 | (30, 20, 15) | 2.727 | 0.908 | 3.181 | 0.940 | 0.909 | 0.930 | 1.079 | 0.965 | 2.653 | 0.858 | 3.143 | 0.912 |
(40, 20, 15) | 2.917 | 0.920 | 3.260 | 0.937 | 0.824 | 0.955 | 0.972 | 0.965 | 2.883 | 0.867 | 3.243 | 0.923 | |
(60, 30, 20) | 2.098 | 0.899 | 2.499 | 0.930 | 0.766 | 0.946 | 0.908 | 0.968 | 2.047 | 0.865 | 2.456 | 0.907 | |
T=0.7 | (30, 20, 15) | 1.648 | 0.886 | 1.984 | 0.942 | 0.738 | 0.944 | 0.876 | 0.961 | 1.592 | 0.858 | 1.930 | 0.917 |
(40, 20, 15) | 2.328 | 0.905 | 2.408 | 0.943 | 0.673 | 0.944 | 0.795 | 0.964 | 2.296 | 0.848 | 2.355 | 0.913 | |
(60, 30, 20) | 1.367 | 0.901 | 1.661 | 0.941 | 0.616 | 0.947 | 0.734 | 0.970 | 1.334 | 0.875 | 1.612 | 0.913 | |
T=1.5 | (30, 20, 15) | 1.481 | 0.879 | 1.726 | 0.935 | 0.654 | 0.934 | 0.782 | 0.959 | 1.455 | 0.858 | 1.683 | 0.907 |
(40, 20, 15) | 1.866 | 0.938 | 2.224 | 0.951 | 0.596 | 0.948 | 0.710 | 0.966 | 1.811 | 0.863 | 2.189 | 0.922 | |
(60, 30, 20) | 1.203 | 0.900 | 1.442 | 0.946 | 0.547 | 0.945 | 0.653 | 0.965 | 1.169 | 0.881 | 1.407 | 0.913 | |
Sch. III | |||||||||||||
T=0.3 | (30, 20, 15) | 2.425 | 0.915 | 3.181 | 0.940 | 0.887 | 0.927 | 1.079 | 0.965 | 2.382 | 0.879 | 3.143 | 0.912 |
(40, 20, 15) | 3.676 | 0.928 | 4.329 | 0.951 | 0.798 | 0.948 | 0.945 | 0.974 | 3.932 | 0.857 | 4.748 | 0.912 | |
(60, 30, 20) | 2.083 | 0.913 | 2.451 | 0.945 | 0.742 | 0.951 | 0.875 | 0.964 | 2.057 | 0.854 | 2.459 | 0.911 | |
T=0.7 | (30, 20, 15) | 1.771 | 0.919 | 2.142 | 0.949 | 0.721 | 0.940 | 0.855 | 0.966 | 1.727 | 0.866 | 2.120 | 0.920 |
(40, 20, 15) | 3.077 | 0.924 | 3.378 | 0.952 | 0.656 | 0.942 | 0.773 | 0.968 | 3.272 | 0.844 | 3.600 | 0.916 | |
(60, 30, 20) | 1.670 | 0.913 | 1.993 | 0.949 | 0.601 | 0.949 | 0.715 | 0.967 | 1.669 | 0.859 | 1.986 | 0.917 | |
T=1.5 | (30, 20, 15) | 1.544 | 0.924 | 1.920 | 0.951 | 0.644 | 0.925 | 0.762 | 0.970 | 1.512 | 0.886 | 1.913 | 0.907 |
(40, 20, 15) | 2.793 | 0.927 | 3.096 | 0.943 | 0.580 | 0.948 | 0.685 | 0.967 | 2.910 | 0.837 | 3.291 | 0.896 | |
(60, 30, 20) | 1.517 | 0.913 | 1.792 | 0.955 | 0.534 | 0.937 | 0.634 | 0.957 | 1.502 | 0.844 | 1.792 | 0.917 |
Bayesian | |||||||||||||
\widehat{\mu}_{ML} | IP | NIP | |||||||||||
90\% | 95\% | 90\% | 95\% | 90\% | 95\% | ||||||||
T | (n, m, k) | AL | CP | AL | CP | AL | CP | AL | CP | AL | CP | AL | CP |
Sch. I | |||||||||||||
T=0.3 | (30, 20, 15) | 0.933 | 0.901 | 1.101 | 0.983 | 0.456 | 0.955 | 0.541 | 0.989 | 0.910 | 0.891 | 1.055 | 0.961 |
(40, 20, 15) | 0.833 | 0.904 | 0.979 | 0.968 | 0.393 | 0.940 | 0.466 | 0.991 | 0.804 | 0.876 | 0.937 | 0.951 | |
(60, 30, 20) | 0.710 | 0.915 | 0.837 | 0.963 | 0.366 | 0.952 | 0.427 | 0.987 | 0.695 | 0.890 | 0.805 | 0.931 | |
T=0.7 | (30, 20, 15) | 0.726 | 0.917 | 0.855 | 0.962 | 0.423 | 0.963 | 0.496 | 0.984 | 0.706 | 0.898 | 0.819 | 0.942 |
(40, 20, 15) | 0.688 | 0.916 | 0.814 | 0.960 | 0.364 | 0.957 | 0.432 | 0.990 | 0.671 | 0.896 | 0.783 | 0.931 | |
(60, 30, 20) | 0.556 | 0.895 | 0.661 | 0.945 | 0.335 | 0.939 | 0.396 | 0.986 | 0.542 | 0.882 | 0.642 | 0.927 | |
T=1.5 | (30, 20, 15) | 0.645 | 0.918 | 0.766 | 0.959 | 0.387 | 0.952 | 0.457 | 0.983 | 0.632 | 0.901 | 0.739 | 0.938 |
(40, 20, 15) | 0.614 | 0.928 | 0.735 | 0.966 | 0.331 | 0.954 | 0.393 | 0.970 | 0.594 | 0.893 | 0.707 | 0.930 | |
(60, 30, 20) | 0.500 | 0.917 | 0.599 | 0.949 | 0.306 | 0.954 | 0.363 | 0.987 | 0.488 | 0.899 | 0.578 | 0.927 | |
Sch. II | |||||||||||||
T=0.3 | (30, 20, 15) | 0.931 | 0.908 | 1.106 | 0.973 | 0.455 | 0.955 | 0.537 | 0.990 | 0.900 | 0.893 | 1.061 | 0.935 |
(40, 20, 15) | 0.820 | 0.905 | 0.971 | 0.971 | 0.388 | 0.955 | 0.462 | 0.983 | 0.797 | 0.882 | 0.929 | 0.949 | |
(60, 30, 20) | 0.700 | 0.918 | 0.834 | 0.975 | 0.362 | 0.962 | 0.426 | 0.982 | 0.681 | 0.905 | 0.798 | 0.949 | |
T=0.7 | (30, 20, 15) | 0.719 | 0.912 | 0.858 | 0.972 | 0.417 | 0.958 | 0.494 | 0.991 | 0.703 | 0.888 | 0.834 | 0.952 |
(40, 20, 15) | 0.757 | 0.918 | 0.816 | 0.970 | 0.358 | 0.957 | 0.423 | 0.985 | 0.735 | 0.899 | 0.785 | 0.956 | |
(60, 30, 20) | 0.555 | 0.907 | 0.662 | 0.969 | 0.334 | 0.960 | 0.391 | 0.983 | 0.545 | 0.879 | 0.637 | 0.947 | |
T=1.5 | (30, 20, 15) | 0.654 | 0.909 | 0.768 | 0.966 | 0.384 | 0.952 | 0.456 | 0.984 | 0.640 | 0.874 | 0.744 | 0.933 |
(40, 20, 15) | 0.633 | 0.907 | 0.751 | 0.971 | 0.331 | 0.960 | 0.388 | 0.980 | 0.615 | 0.874 | 0.721 | 0.954 | |
(60, 30, 20) | 0.506 | 0.890 | 0.593 | 0.971 | 0.307 | 0.939 | 0.357 | 0.988 | 0.490 | 0.872 | 0.578 | 0.953 | |
Sch. III | |||||||||||||
T=0.3 | (30, 20, 15) | 0.915 | 0.926 | 1.106 | 0.973 | 0.447 | 0.941 | 0.537 | 0.990 | 0.891 | 0.891 | 1.061 | 0.935 |
(40, 20, 15) | 0.918 | 0.906 | 1.080 | 0.970 | 0.377 | 0.942 | 0.445 | 0.987 | 0.884 | 0.862 | 1.031 | 0.937 | |
(60, 30, 20) | 0.693 | 0.925 | 0.832 | 0.972 | 0.351 | 0.960 | 0.417 | 0.990 | 0.675 | 0.900 | 0.801 | 0.934 | |
T=0.7 | (30, 20, 15) | 0.772 | 0.922 | 0.914 | 0.980 | 0.415 | 0.955 | 0.485 | 0.997 | 0.750 | 0.902 | 0.884 | 0.964 |
(40, 20, 15) | 0.834 | 0.925 | 0.990 | 0.974 | 0.345 | 0.950 | 0.411 | 0.987 | 0.806 | 0.876 | 0.941 | 0.935 | |
(60, 30, 20) | 0.641 | 0.919 | 0.760 | 0.968 | 0.326 | 0.955 | 0.383 | 0.992 | 0.623 | 0.890 | 0.729 | 0.947 | |
T=1.5 | (30, 20, 15) | 0.704 | 0.921 | 0.842 | 0.971 | 0.382 | 0.942 | 0.446 | 0.992 | 0.686 | 0.896 | 0.808 | 0.947 |
(40, 20, 15) | 0.773 | 0.914 | 0.911 | 0.963 | 0.318 | 0.956 | 0.377 | 0.979 | 0.739 | 0.878 | 0.860 | 0.923 | |
(60, 30, 20) | 0.589 | 0.928 | 0.702 | 0.970 | 0.297 | 0.949 | 0.354 | 0.987 | 0.573 | 0.904 | 0.677 | 0.940 |
\widehat{S(t) }_{B} | |||||||||||||
\widehat{S(t) }_{ML} | IP | NIP | |||||||||||
90\% | 95\% | 90\% | 95\% | 90\% | 95\% | ||||||||
T | (n, m, k) | AL | CP | AL | CP | AL | CP | AL | CP | AL | CP | AL | CP |
Sch. I | |||||||||||||
T=0.3 | (30, 20, 15) | 0.088 | 0.736 | 0.110 | 0.797 | 0.021 | 0.980 | 0.026 | 0.985 | 0.138 | 0.922 | 0.185 | 0.949 |
(40, 20, 15) | 0.113 | 0.771 | 0.140 | 0.813 | 0.022 | 0.987 | 0.026 | 0.993 | 0.164 | 0.919 | 0.215 | 0.948 | |
(60, 30, 20) | 0.091 | 0.803 | 0.110 | 0.849 | 0.021 | 0.976 | 0.026 | 0.978 | 0.123 | 0.907 | 0.158 | 0.945 | |
T=0.7 | (30, 20, 15) | 0.068 | 0.789 | 0.088 | 0.856 | 0.020 | 0.965 | 0.024 | 0.963 | 0.099 | 0.903 | 0.133 | 0.946 |
(40, 20, 15) | 0.069 | 0.727 | 0.092 | 0.799 | 0.020 | 0.954 | 0.024 | 0.948 | 0.105 | 0.926 | 0.144 | 0.919 | |
(60, 30, 20) | 0.057 | 0.812 | 0.069 | 0.875 | 0.019 | 0.980 | 0.023 | 0.985 | 0.075 | 0.914 | 0.097 | 0.929 | |
T=1.5 | (30, 20, 15) | 0.058 | 0.790 | 0.069 | 0.838 | 0.018 | 0.965 | 0.022 | 0.918 | 0.084 | 0.918 | 0.108 | 0.939 |
(40, 20, 15) | 0.066 | 0.758 | 0.083 | 0.809 | 0.018 | 0.954 | 0.022 | 0.985 | 0.098 | 0.909 | 0.132 | 0.934 | |
(60, 30, 20) | 0.049 | 0.833 | 0.058 | 0.856 | 0.018 | 0.980 | 0.021 | 0.903 | 0.066 | 0.948 | 0.083 | 0.929 | |
Sch. II | |||||||||||||
T=0.3 | (30, 20, 15) | 0.089 | 0.743 | 0.113 | 0.769 | 0.021 | 0.980 | 0.026 | 0.985 | 0.140 | 0.921 | 0.188 | 0.943 |
(40, 20, 15) | 0.111 | 0.754 | 0.143 | 0.802 | 0.021 | 0.965 | 0.026 | 0.963 | 0.159 | 0.904 | 0.215 | 0.954 | |
(60, 30, 20) | 0.092 | 0.814 | 0.110 | 0.859 | 0.021 | 0.954 | 0.026 | 0.948 | 0.125 | 0.921 | 0.156 | 0.934 | |
T=0.7 | (30, 20, 15) | 0.068 | 0.794 | 0.080 | 0.802 | 0.020 | 0.943 | 0.024 | 0.933 | 0.098 | 0.910 | 0.124 | 0.944 |
(40, 20, 15) | 0.105 | 0.730 | 0.088 | 0.802 | 0.020 | 0.932 | 0.024 | 0.918 | 0.150 | 0.912 | 0.139 | 0.940 | |
(60, 30, 20) | 0.055 | 0.821 | 0.066 | 0.836 | 0.019 | 0.980 | 0.023 | 0.985 | 0.074 | 0.913 | 0.094 | 0.930 | |
T=1.5 | (30, 20, 15) | 0.054 | 0.765 | 0.067 | 0.793 | 0.018 | 0.943 | 0.022 | 0.888 | 0.078 | 0.905 | 0.104 | 0.928 |
(40, 20, 15) | 0.063 | 0.735 | 0.073 | 0.781 | 0.018 | 0.932 | 0.022 | 0.985 | 0.096 | 0.895 | 0.123 | 0.950 | |
(60, 30, 20) | 0.048 | 0.827 | 0.059 | 0.884 | 0.018 | 0.980 | 0.021 | 0.873 | 0.064 | 0.913 | 0.085 | 0.934 | |
Sch. III | |||||||||||||
T=0.3 | (30, 20, 15) | 0.101 | 0.782 | 0.113 | 0.769 | 0.021 | 0.979 | 0.026 | 0.985 | 0.144 | 0.919 | 0.188 | 0.943 |
(40, 20, 15) | 0.089 | 0.668 | 0.114 | 0.730 | 0.021 | 0.943 | 0.026 | 0.933 | 0.132 | 0.888 | 0.180 | 0.926 | |
(60, 30, 20) | 0.070 | 0.778 | 0.085 | 0.808 | 0.021 | 0.932 | 0.025 | 0.918 | 0.093 | 0.901 | 0.120 | 0.936 | |
T=0.7 | (30, 20, 15) | 0.065 | 0.766 | 0.074 | 0.815 | 0.020 | 0.921 | 0.024 | 0.903 | 0.093 | 0.908 | 0.119 | 0.951 |
(40, 20, 15) | 0.088 | 0.684 | 0.105 | 0.758 | 0.020 | 0.910 | 0.024 | 0.888 | 0.129 | 0.891 | 0.170 | 0.933 | |
(60, 30, 20) | 0.063 | 0.803 | 0.074 | 0.830 | 0.019 | 0.980 | 0.023 | 0.985 | 0.083 | 0.906 | 0.107 | 0.937 | |
T=1.5 | (30, 20, 15) | 0.058 | 0.788 | 0.069 | 0.797 | 0.018 | 0.921 | 0.022 | 0.858 | 0.084 | 0.947 | 0.109 | 0.941 |
(40, 20, 15) | 0.078 | 0.684 | 0.099 | 0.747 | 0.018 | 0.910 | 0.023 | 0.985 | 0.116 | 0.883 | 0.158 | 0.927 | |
(60, 30, 20) | 0.057 | 0.787 | 0.069 | 0.803 | 0.018 | 0.980 | 0.022 | 0.903 | 0.077 | 0.899 | 0.098 | 0.939 |
\widehat{H(t) }_{B} | |||||||||||||
\widehat{H(t) }_{ML} | IP | NIP | |||||||||||
90\% | 95\% | 90\% | 95\% | 90\% | 95\% | ||||||||
T | (n, m, k) | AL | CP | AL | CP | AL | CP | AL | CP | AL | CP | AL | CP |
Sch. I | |||||||||||||
T=0.3 | (30, 20, 15) | 0.472 | 0.716 | 0.537 | 0.769 | 0.078 | 0.961 | 0.093 | 0.966 | 0.475 | 0.943 | 0.556 | 0.963 |
(40, 20, 15) | 0.473 | 0.750 | 0.533 | 0.784 | 0.078 | 0.980 | 0.092 | 1.000 | 0.474 | 0.933 | 0.559 | 0.956 | |
(60, 30, 20) | 0.344 | 0.781 | 0.408 | 0.819 | 0.078 | 1.000 | 0.091 | 1.000 | 0.345 | 0.922 | 0.416 | 0.959 | |
T=0.7 | (30, 20, 15) | 0.310 | 0.767 | 0.354 | 0.825 | 0.074 | 1.031 | 0.087 | 1.000 | 0.300 | 0.924 | 0.343 | 0.953 |
(40, 20, 15) | 0.344 | 0.707 | 0.417 | 0.770 | 0.067 | 0.963 | 0.080 | 0.955 | 0.339 | 0.946 | 0.417 | 0.925 | |
(60, 30, 20) | 0.256 | 0.790 | 0.301 | 0.843 | 0.072 | 1.000 | 0.086 | 1.000 | 0.249 | 0.926 | 0.294 | 0.937 | |
T=1.5 | (30, 20, 15) | 0.288 | 0.768 | 0.343 | 0.808 | 0.072 | 1.000 | 0.085 | 1.000 | 0.280 | 0.931 | 0.332 | 0.938 |
(40, 20, 15) | 0.332 | 0.737 | 0.397 | 0.780 | 0.067 | 0.975 | 0.079 | 0.995 | 0.330 | 0.930 | 0.395 | 0.942 | |
(60, 30, 20) | 0.243 | 0.810 | 0.296 | 0.825 | 0.071 | 1.000 | 0.084 | 1.000 | 0.235 | 0.959 | 0.290 | 0.931 | |
Sch.I I | |||||||||||||
T=0.3 | (30, 20, 15) | 0.470 | 0.722 | 0.546 | 0.742 | 0.078 | 0.927 | 0.093 | 0.975 | 0.466 | 0.936 | 0.562 | 0.949 |
(40, 20, 15) | 0.485 | 0.733 | 0.527 | 0.773 | 0.078 | 0.967 | 0.092 | 0.989 | 0.494 | 0.924 | 0.547 | 0.955 | |
(60, 30, 20) | 0.333 | 0.792 | 0.398 | 0.828 | 0.077 | 1.035 | 0.091 | 1.000 | 0.329 | 0.937 | 0.401 | 0.945 | |
T=0.7 | (30, 20, 15) | 0.310 | 0.773 | 0.375 | 0.773 | 0.074 | 0.967 | 0.088 | 1.000 | 0.299 | 0.925 | 0.369 | 0.955 |
(40, 20, 15) | 0.429 | 0.710 | 0.438 | 0.773 | 0.074 | 0.967 | 0.087 | 0.959 | 0.434 | 0.935 | 0.440 | 0.949 | |
(60, 30, 20) | 0.253 | 0.798 | 0.308 | 0.806 | 0.073 | 1.007 | 0.086 | 1.000 | 0.247 | 0.926 | 0.300 | 0.940 | |
T=1.5 | (30, 20, 15) | 0.315 | 0.744 | 0.357 | 0.765 | 0.072 | 0.956 | 0.085 | 1.000 | 0.314 | 0.925 | 0.350 | 0.935 |
(40, 20, 15) | 0.387 | 0.715 | 0.455 | 0.753 | 0.073 | 0.941 | 0.086 | 0.965 | 0.380 | 0.926 | 0.461 | 0.961 | |
(60, 30, 20) | 0.248 | 0.805 | 0.290 | 0.852 | 0.071 | 1.000 | 0.084 | 1.000 | 0.239 | 0.925 | 0.285 | 0.941 | |
Sch. III | |||||||||||||
T=0.3 | (30, 20, 15) | 0.417 | 0.761 | 0.546 | 0.742 | 0.078 | 0.927 | 0.093 | 1.000 | 0.420 | 0.935 | 0.562 | 0.949 |
(40, 20, 15) | 0.663 | 0.649 | 0.779 | 0.704 | 0.078 | 0.880 | 0.093 | 0.877 | 0.771 | 0.906 | 0.944 | 0.933 | |
(60, 30, 20) | 0.348 | 0.756 | 0.412 | 0.779 | 0.077 | 0.973 | 0.091 | 1.000 | 0.349 | 0.917 | 0.427 | 0.948 | |
T=0.7 | (30, 20, 15) | 0.362 | 0.745 | 0.429 | 0.786 | 0.074 | 0.983 | 0.088 | 1.000 | 0.358 | 0.930 | 0.437 | 0.962 |
(40, 20, 15) | 0.607 | 0.666 | 0.665 | 0.731 | 0.075 | 0.914 | 0.089 | 0.898 | 0.695 | 0.912 | 0.758 | 0.946 | |
(60, 30, 20) | 0.332 | 0.781 | 0.394 | 0.800 | 0.074 | 1.000 | 0.087 | 1.000 | 0.338 | 0.923 | 0.405 | 0.952 | |
T=1.5 | (30, 20, 15) | 0.338 | 0.766 | 0.429 | 0.769 | 0.073 | 0.961 | 0.086 | 1.000 | 0.335 | 0.962 | 0.443 | 0.953 |
(40, 20, 15) | 0.621 | 0.666 | 0.689 | 0.720 | 0.073 | 0.900 | 0.087 | 0.898 | 0.686 | 0.903 | 0.796 | 0.936 | |
(60, 30, 20) | 0.331 | 0.765 | 0.394 | 0.774 | 0.072 | 0.968 | 0.086 | 1.000 | 0.333 | 0.923 | 0.408 | 0.950 |
Algorithm 1 MCMC method. |
\bf{Step} \bf{1, } start with \lambda ^{(0)}=\hat{\lambda}_{ML} and \mu ^{(0)}=\hat{\mu}_{ML} |
\bf{Step} \bf{2, } set i=1 |
\bf{Step} \bf{3, } Generate \lambda ^{(i)}\sim GammaDist.\left[ D^{\ast }+a, W\left(\mu ^{(i-1)}|\underline{\bf{x}}\right)+b_{1} \right] =\pi _{1}^{\ast }(\lambda |\mu ^{(i-1)}; \underline{x}) |
\bf{Step} \bf{4, } Generate a proposal \mu ^{(\ast)} from N(\mu ^{(i-1)}, V(\mu)) |
\bf{Step} \bf{5, } Calculate the acceptance probabilities d_{\mu}=min\left[ 1, \frac{\pi _{2}^{\ast }(\mu ^{(\ast)}|\lambda ^{(i-1)})}{\pi_{1}^{\ast }(\mu^{(i-1)}|\lambda ^{(i-1)})}\right] |
\bf{Step} \bf{6, } Generate u_{1} that follows a U(0, 1) distribution. If u_{1}\leq d_{\mu } , set \mu ^{(i)}=\mu ^{(\ast)} ; otherwise, set \mu ^{(i)}=\mu ^{(i-1)} |
\bf{Step} \bf{7, } set i=i+1 , repeat steps 3 to 7, N times and obtain \left(\lambda ^{(j)}, \mu ^{(j)}\right) , j=1, 2, ..., N. |
\bf{Step} \bf{8, } Remove the first B values for \lambda and \mu , which is the burn-in period of \lambda ^{(j)} and \mu ^{(j)} , respectively, where j=1, 2, ..., N-B . |
IP | NIP | |||||||
Sch. | j | \rho | \widehat{X}_{\rho :R_{j}^{\ast }} | ET interval | HPD interval | \widehat{X}_{\rho :R_{j}^{\ast }} | ET interval | HPD interval |
1 | 3 | 1 | 4.824 | (1.322, 21.783) | (1.214, 17.062) | 6.410 | (1.324, 23.275) | (1.214, 18.034) |
2 | 10.634 | (2.417, 42.868) | (1.319, 34.499) | 14.202 | (2.429, 46.302) | (1.308, 36.810) | ||
3 | 22.254 | (5.271, 86.933) | (2.348, 70.530) | 29.787 | (5.289, 94.280) | (2.274, 75.524) | ||
7 | 1 | 5.914 | (5.943, 12.764) | (5.908, 11.190) | 7.639 | (5.944, 13.261) | (5.908, 11.514) | |
2 | 7.367 | (6.254, 17.586) | (5.939, 15.267) | 9.587 | (6.258, 18.558) | (5.935, 15.923) | ||
3 | 9.027 | (6.817, 22.790) | (6.182, 19.570) | 11.814 | (6.821, 24.302) | (6.071, 20.612) | ||
4 | 10.964 | (7.581, 28.762) | (6.654, 24.889) | 14.411 | (7.581, 30.909) | (6.608, 26.363) | ||
5 | 13.288 | (8.553, 35.920) | (7.294, 31.039) | 17.528 | (8.544, 38.832) | (7.213, 33.049) | ||
6 | 16.192 | (9.782, 44.951) | (8.125, 38.766) | 21.424 | (9.761, 48.820) | (8.000, 41.448) | ||
7 | 20.066 | (11.390, 57.239) | (9.351, 48.369) | 26.619 | (11.351, 62.390) | (9.026, 52.794) | ||
8 | 25.877 | (13.657, 76.426) | (10.679, 65.357) | 34.412 | (13.592, 83.499) | (10.421, 70.278) | ||
9 | 37.497 | (17.494,118.537) | (12.895, 99.972) | 49.997 | (17.400,129.445) | (12.532,107.555) | ||
2 | 3 | 1 | 4.924 | (1.330, 21.776) | (1.214, 17.251) | 6.488 | (1.332, 22.842) | (1.214, 17.983) |
2 | 10.886 | (2.506, 42.386) | (1.343, 34.584) | 14.399 | (2.526, 44.762) | (1.337, 36.266) | ||
3 | 22.809 | (5.601, 85.629) | (5.198, 69.693) | 30.221 | (5.656, 90.660) | (5.227, 73.313) | ||
6 | 1 | 8.082 | (5.365, 25.811) | (5.250, 21.286) | 10.524 | (5.367, 26.877) | (5.250, 22.019) | |
2 | 14.044 | (6.541, 46.422) | (5.379, 38.619) | 18.435 | (6.562, 48.797) | (5.372, 40.302) | ||
3 | 25.967 | (9.637, 89.664) | (9.233, 73.728) | 34.256 | (9.691, 94.695) | (9.262, 77.348) | ||
9 | 1 | 10.305 | (10.188, 22.456) | (10.120, 19.742) | 13.284 | (10.191, 23.096) | (10.120, 20.181) | |
2 | 13.285 | (10.826, 32.161) | (10.192, 28.030) | 17.239 | (10.837, 33.440) | (10.190, 28.937) | ||
3 | 17.260 | (12.126, 44.641) | (12.105, 38.397) | 22.513 | (12.152, 46.768) | (10.856, 39.936) | ||
4 | 23.220 | (14.248, 63.813) | (12.029, 55.213) | 30.425 | (14.288, 67.225) | (11.978, 57.679) | ||
5 | 35.144 | (18.060,105.916) | (14.149, 90.288) | 46.246 | (18.126,111.946) | (14.055, 94.654) | ||
3 | 3 | 1 | 5.061 | (1.335, 22.283) | (1.214, 17.716) | 6.661 | (1.337, 23.291) | (1.214, 18.425) |
2 | 11.226 | (2.572, 43.235) | (1.356, 35.439) | 14.832 | (2.597, 45.441) | (1.351, 37.039) | ||
3 | 23.556 | (5.834, 87.257) | (2.664, 72.209) | 31.172 | (5.910, 91.905) | (2.639, 75.613) | ||
6 | 1 | 8.219 | (5.370, 26.318) | (5.250, 21.752) | 10.697 | (5.372, 27.327) | (5.250, 22.460) | |
2 | 14.384 | (6.607, 47.271) | (5.391, 39.474) | 18.867 | (6.632, 49.477) | (5.386, 41.075) | ||
3 | 26.714 | (9.870, 91.293) | (6.612, 75.361) | 35.207 | (9.945, 95.940) | (6.674, 79.648) | ||
9 | 1 | 26.714 | (9.870, 91.293) | (9.142, 75.361) | 15.580 | (10.255, 32.209) | (10.133, 27.343) | |
2 | 18.205 | (11.490, 52.153) | (10.274, 44.357) | 23.750 | (11.515, 54.360) | (10.269, 45.957) | ||
3 | 30.536 | (14.752, 96.175) | (11.495, 80.244) | 40.090 | (14.828,100.823) | (11.514, 83.663) |
IP | NIP | ||||||
Sch. | s | \widehat{Y}_{s:N} | ET interval | HPD interval | \widehat{Y}_{s:N} | ET interval | HPD interval |
1 | 1 | 0.704 | (0.016, 2.927) | (0.000, 2.255) | 0.739 | (0.016, 3.139) | (0.000, 2.393) |
2 | 0.972 | (0.143, 4.811) | (0.013, 3.858) | 1.014 | (0.144, 5.212) | (0.012, 4.127) | |
3 | 1.314 | (0.361, 6.671) | (0.114, 5.470) | 1.381 | (0.362, 7.270) | (0.106, 5.878) | |
4 | 1.760 | (0.668, 9.119) | (0.299, 7.574) | 1.861 | (0.668, 9.976) | (0.281, 8.162) | |
5 | 2.216 | (1.036, 11.675) | (0.545, 9.782) | 2.356 | (1.032, 12.810) | (0.514, 10.566) | |
6 | 2.696 | (1.457, 14.399) | (0.842, 12.142) | 2.878 | (1.448, 15.838) | (0.794, 13.139) | |
7 | 3.481 | (2.039, 18.751) | (1.237, 15.844) | 3.724 | (2.023, 20.644) | (1.169, 17.159) | |
8 | 4.352 | (2.726, 23.618) | (1.717, 20.008) | 4.666 | (2.702, 26.033) | (1.622, 21.689) | |
9 | 5.356 | (3.544, 29.252) | (2.293, 24.833) | 5.753 | (3.509, 32.275) | (2.167, 26.942) | |
10 | 9.350 | (5.264, 50.149) | (3.233, 41.790) | 9.952 | (5.218, 54.977) | (3.068, 45.151) | |
2 | 1 | 0.722 | (0.017, 2.926) | (0.000, 2.282) | 0.750 | (0.017, 3.077) | (0.000, 2.386) |
2 | 0.978 | (0.154, 4.751) | (0.016, 3.865) | 1.060 | (0.156, 5.028) | (0.016, 4.061) | |
3 | 1.308 | (0.391, 6.536) | (0.134, 5.450) | 1.423 | (0.396, 6.943) | (0.131, 5.742) | |
4 | 1.738 | (0.727, 8.892) | (0.350, 7.520) | 1.898 | (0.734, 9.468) | (0.341, 7.938) | |
5 | 2.172 | (1.132, 11.338) | (0.638, 9.684) | 2.382 | (1.140, 12.097) | (0.622, 10.237) | |
6 | 2.627 | (1.596, 13.939) | (0.984, 11.990) | 2.890 | (1.606, 14.898) | (0.959, 12.690) | |
7 | 3.380 | (2.238, 18.128) | (1.444, 15.628) | 3.726 | (2.249, 19.387) | (1.408, 16.549) | |
8 | 4.213 | (3.000, 22.800) | (2.003, 19.709) | 4.650 | (3.011, 24.402) | (1.954, 20.885) | |
9 | 5.168 | (3.905, 28.199) | (2.675, 24.436) | 5.714 | (3.916, 30.202) | (2.608, 25.909) | |
10 | 9.146 | (5.795, 48.785) | (3.750, 41.359) | 10.042 | (5.814, 52.007) | (3.667, 43.723) | |
3 | 1 | 0.748 | (0.017, 2.998) | (0.000, 2.348) | 0.775 | (0.018, 3.142) | (0.000, 2.449) |
2 | 1.042 | (0.162, 4.847) | (0.018, 3.964) | 1.051 | (0.164, 5.104) | (0.017, 4.150) | |
3 | 1.386 | (0.412, 6.650) | (0.146, 5.579) | 1.405 | (0.419, 7.024) | (0.144, 5.854) | |
4 | 1.836 | (0.768, 9.030) | (0.380, 7.686) | 1.867 | (0.779, 9.557) | (0.374, 8.077) | |
5 | 2.288 | (1.196, 11.496) | (0.691, 9.887) | 2.335 | (1.211, 12.187) | (0.680, 10.403) | |
6 | 2.761 | (1.690, 14.117) | (1.066, 12.229) | 2.825 | (1.708, 14.987) | (1.050, 12.881) | |
7 | 3.551 | (2.371, 18.349) | (1.564, 15.931) | 3.637 | (2.394, 19.492) | (1.541, 16.788) | |
8 | 4.418 | (3.181, 23.064) | (2.170, 20.083) | 4.534 | (3.209, 24.515) | (2.137, 21.175) | |
9 | 5.414 | (4.142, 28.510) | (2.897, 24.888) | 5.563 | (4.176, 30.322) | (2.855, 26.255) | |
10 | 9.635 | (6.145, 49.504) | (4.051, 42.221) | 9.839 | (6.198, 52.438) | (4.002, 44.426) |
Bayesian | |||||||||
{ \widehat{\lambda}_{BS} | { \widehat{\lambda}_{BL} | { \widehat{\lambda}_{BE} | |||||||
Sch. | T | (n, m, k) | \widehat{\lambda}_{ML} | IP | NIP | IP | NIP | IP | NIP |
MSE | |||||||||
Sch-I | T=0.3 | (30, 20, 15) | 0.5082 | 0.0244 | 0.5305 | 0.0239 | 0.3282 | 0.0243 | 0.3739 |
(40, 20, 15) | 0.5186 | 0.0192 | 0.5693 | 0.0187 | 0.3517 | 0.0190 | 0.4026 | ||
(60, 30, 20) | 0.4127 | 0.0173 | 0.4355 | 0.0170 | 0.2675 | 0.0171 | 0.3403 | ||
T=0.7 | (30, 20, 15) | 0.2879 | 0.0259 | 0.2666 | 0.0252 | 0.2114 | 0.0255 | 0.2243 | |
(40, 20, 15) | 0.6400 | 0.0203 | 0.6240 | 0.0199 | 0.3760 | 0.0202 | 0.4454 | ||
(60, 30, 20) | 0.2110 | 0.0172 | 0.2007 | 0.0170 | 0.1646 | 0.0172 | 0.1708 | ||
T=1.5 | (30, 20, 15) | 0.2843 | 0.0250 | 0.2671 | 0.0242 | 0.2085 | 0.0245 | 0.2198 | |
(40, 20, 15) | 0.5891 | 0.0226 | 0.5973 | 0.0222 | 0.3726 | 0.0225 | 0.4423 | ||
(60, 30, 20) | 0.2528 | 0.0175 | 0.2440 | 0.0171 | 0.1921 | 0.0172 | 0.2036 | ||
Sch-II | T=0.3 | (30, 20, 15) | 0.5166 | 0.0252 | 0.5284 | 0.0245 | 0.3486 | 0.0250 | 0.3869 |
(40, 20, 15) | 0.5489 | 0.0197 | 0.5772 | 0.0194 | 0.3644 | 0.0197 | 0.4159 | ||
(60, 30, 20) | 0.3080 | 0.0174 | 0.3002 | 0.0172 | 0.2285 | 0.0174 | 0.2459 | ||
T=0.7 | (30, 20, 15) | 0.3489 | 0.0255 | 0.3314 | 0.0247 | 0.2473 | 0.0250 | 0.2673 | |
(40, 20, 15) | 0.5221 | 0.0191 | 0.5308 | 0.0187 | 0.3333 | 0.0190 | 0.3778 | ||
(60, 30, 20) | 0.2269 | 0.0164 | 0.2135 | 0.0160 | 0.1734 | 0.0162 | 0.1794 | ||
T=1.5 | (30, 20, 15) | 0.3369 | 0.0265 | 0.3188 | 0.0256 | 0.2451 | 0.0259 | 0.2584 | |
(40, 20, 15) | 0.6190 | 0.0205 | 0.6676 | 0.0198 | 0.3925 | 0.0200 | 0.4631 | ||
(60, 30, 20) | 0.2130 | 0.0177 | 0.2087 | 0.0173 | 0.1658 | 0.0174 | 0.1737 | ||
Sch-III | T=0.3 | (30, 20, 15) | 0.5166 | 0.0252 | 0.5284 | 0.0245 | 0.3486 | 0.0250 | 0.3869 |
(40, 20, 15) | 1.4205 | 0.0173 | 2.3081 | 0.0169 | 0.7138 | 0.0171 | 1.1274 | ||
(60, 30, 20) | 0.3416 | 0.0162 | 0.3652 | 0.0159 | 0.2586 | 0.0161 | 0.2772 | ||
T=0.7 | (30, 20, 15) | 0.5049 | 0.0246 | 0.5692 | 0.0238 | 0.3290 | 0.0241 | 0.4095 | |
(40, 20, 15) | 1.2471 | 0.0183 | 1.7174 | 0.0179 | 0.6258 | 0.0181 | 0.9441 | ||
(60, 30, 20) | 0.3569 | 0.0152 | 0.3705 | 0.0149 | 0.2577 | 0.0151 | 0.2792 | ||
T=1.5 | (30, 20, 15) | 0.4781 | 0.0246 | 0.5283 | 0.0238 | 0.3279 | 0.0241 | 0.3805 | |
(40, 20, 15) | 1.4825 | 0.0182 | 2.0789 | 0.0179 | 0.6943 | 0.0181 | 1.0823 | ||
(60, 30, 20) | 0.3832 | 0.0164 | 0.4044 | 0.0161 | 0.2737 | 0.0163 | 0.3012 | ||
EB | |||||||||
Sch-I | T=0.3 | (30, 20, 15) | 0.1962 | 0.0036 | 0.1983 | 0.0069 | 0.1024 | 0.0121 | 0.0855 |
(40, 20, 15) | 0.1816 | 0.0052 | 0.1950 | 0.0036 | 0.0900 | 0.0079 | 0.0715 | ||
(60, 30, 20) | 0.1219 | 0.0057 | 0.1268 | 0.0019 | 0.0649 | 0.0057 | 0.0502 | ||
T=0.7 | (30, 20, 15) | 0.1114 | 0.0075 | 0.0936 | 0.0029 | 0.0436 | 0.0080 | 0.0274 | |
(40, 20, 15) | 0.2209 | 0.0041 | 0.2048 | 0.0046 | 0.1182 | 0.0089 | 0.1086 | ||
(60, 30, 20) | 0.0984 | 0.0019 | 0.0884 | 0.0054 | 0.0519 | 0.0090 | 0.0403 | ||
T=1.5 | (30, 20, 15) | 0.1340 | 0.0092 | 0.1151 | 0.0012 | 0.0662 | 0.0063 | 0.0516 | |
(40, 20, 15) | 0.1950 | 0.0010 | 0.1840 | 0.0077 | 0.1037 | 0.0119 | 0.0935 | ||
(60, 30, 20) | 0.1235 | 0.0052 | 0.1125 | 0.0021 | 0.0748 | 0.0058 | 0.0647 | ||
Sch-II | T=0.3 | (30, 20, 15) | 0.2021 | 0.0034 | 0.2015 | 0.0070 | 0.1070 | 0.0122 | 0.0894 |
(40, 20, 15) | 0.1772 | 0.0006 | 0.1840 | 0.0079 | 0.0827 | 0.0122 | 0.0649 | ||
(60, 30, 20) | 0.1107 | 0.0002 | 0.1118 | 0.0072 | 0.0542 | 0.0109 | 0.0379 | ||
T=0.7 | (30, 20, 15) | 0.1516 | 0.0109 | 0.1333 | 0.0007 | 0.0785 | 0.0044 | 0.0645 | |
(40, 20, 15) | 0.2083 | 0.0036 | 0.2028 | 0.0049 | 0.1182 | 0.0091 | 0.1067 | ||
(60, 30, 20) | 0.1205 | 0.0051 | 0.1060 | 0.0021 | 0.0684 | 0.0057 | 0.0573 | ||
T=1.5 | (30, 20, 15) | 0.1597 | 0.0103 | 0.1411 | 0.0001 | 0.0889 | 0.0051 | 0.0757 | |
(40, 20, 15) | 0.2560 | 0.0116 | 0.2477 | 0.0030 | 0.1533 | 0.0012 | 0.1453 | ||
(60, 30, 20) | 0.1101 | 0.0089 | 0.1001 | 0.0016 | 0.0636 | 0.0020 | 0.0529 | ||
Sch-III | T=0.3 | (30, 20, 15) | 0.1928 | 0.0034 | 0.2015 | 0.0070 | 0.1070 | 0.0122 | 0.0894 |
(40, 20, 15) | 0.3861 | 0.0032 | 0.4732 | 0.0048 | 0.2402 | 0.0088 | 0.2642 | ||
(60, 30, 20) | 0.1597 | 0.0022 | 0.1710 | 0.0046 | 0.1106 | 0.0081 | 0.1002 | ||
T=0.7 | (30, 20, 15) | 0.1877 | 0.0107 | 0.1846 | 0.0008 | 0.1130 | 0.0040 | 0.1052 | |
(40, 20, 15) | 0.3373 | 0.0014 | 0.4115 | 0.0066 | 0.2144 | 0.0106 | 0.2268 | ||
(60, 30, 20) | 0.1610 | 0.0039 | 0.1703 | 0.0030 | 0.1106 | 0.0064 | 0.1009 | ||
T=1.5 | (30, 20, 15) | 0.1982 | 0.0107 | 0.1950 | 0.0007 | 0.1223 | 0.0041 | 0.1140 | |
(40, 20, 15) | 0.3659 | 0.0018 | 0.4368 | 0.0062 | 0.2275 | 0.0103 | 0.2443 | ||
(60, 30, 20) | 0.1717 | 0.0001 | 0.1788 | 0.0068 | 0.1167 | 0.0103 | 0.1076 |
Bayesian | |||||||||
\widehat{\mu }_{BS} | \widehat{\mu }_{BL} | \widehat{\mu }_{BE} | |||||||
Sch. | T | (n, m, k) | \widehat{\mu }_{ML} | IP | NIP | IP | NIP | IP | NIP |
MSE | |||||||||
Sch-I | T=0.3 | (30, 20, 15) | 0.0410 | 0.0066 | 0.0361 | 0.0065 | 0.0337 | 0.0064 | 0.0320 |
(40, 20, 15) | 0.0307 | 0.0051 | 0.0270 | 0.0051 | 0.0257 | 0.0050 | 0.0250 | ||
(60, 30, 20) | 0.0236 | 0.0046 | 0.0214 | 0.0046 | 0.0207 | 0.0046 | 0.0203 | ||
T=0.7 | (30, 20, 15) | 0.0287 | 0.0070 | 0.0246 | 0.0068 | 0.0235 | 0.0066 | 0.0229 | |
(40, 20, 15) | 0.0304 | 0.0054 | 0.0259 | 0.0053 | 0.0248 | 0.0051 | 0.0239 | ||
(60, 30, 20) | 0.0187 | 0.0047 | 0.0163 | 0.0046 | 0.0158 | 0.0046 | 0.0155 | ||
T=1.5 | (30, 20, 15) | 0.0301 | 0.0069 | 0.0257 | 0.0067 | 0.0246 | 0.0066 | 0.0238 | |
(40, 20, 15) | 0.0299 | 0.0060 | 0.0259 | 0.0059 | 0.0248 | 0.0058 | 0.0240 | ||
(60, 30, 20) | 0.0185 | 0.0047 | 0.0161 | 0.0046 | 0.0156 | 0.0046 | 0.0152 | ||
Sch-II | T=0.3 | (30, 20, 15) | 0.0459 | 0.0069 | 0.0409 | 0.0067 | 0.0382 | 0.0066 | 0.0364 |
(40, 20, 15) | 0.0310 | 0.0054 | 0.0272 | 0.0054 | 0.0259 | 0.0053 | 0.0253 | ||
(60, 30, 20) | 0.0215 | 0.0046 | 0.0190 | 0.0045 | 0.0184 | 0.0044 | 0.0180 | ||
T=0.7 | (30, 20, 15) | 0.0287 | 0.0066 | 0.0248 | 0.0066 | 0.0237 | 0.0064 | 0.0228 | |
(40, 20, 15) | 0.0256 | 0.0052 | 0.0220 | 0.0051 | 0.0210 | 0.0050 | 0.0202 | ||
(60, 30, 20) | 0.0176 | 0.0042 | 0.0153 | 0.0041 | 0.0148 | 0.0041 | 0.0144 | ||
T=1.5 | (30, 20, 15) | 0.0308 | 0.0069 | 0.0268 | 0.0067 | 0.0255 | 0.0066 | 0.0246 | |
(40, 20, 15) | 0.0279 | 0.0053 | 0.0243 | 0.0053 | 0.0231 | 0.0052 | 0.0221 | ||
(60, 30, 20) | 0.0161 | 0.0046 | 0.0140 | 0.0045 | 0.0136 | 0.0044 | 0.0133 | ||
Sch-III | T=0.3 | (30, 20, 15) | 0.0459 | 0.0069 | 0.0409 | 0.0067 | 0.0382 | 0.0066 | 0.0364 |
(40, 20, 15) | 0.0462 | 0.0046 | 0.0423 | 0.0046 | 0.0393 | 0.0046 | 0.0370 | ||
(60, 30, 20) | 0.0248 | 0.0043 | 0.0226 | 0.0042 | 0.0216 | 0.0042 | 0.0207 | ||
T=0.7 | (30, 20, 15) | 0.0350 | 0.0062 | 0.0304 | 0.0062 | 0.0286 | 0.0061 | 0.0272 | |
(40, 20, 15) | 0.0428 | 0.0051 | 0.0394 | 0.0050 | 0.0369 | 0.0049 | 0.0348 | ||
(60, 30, 20) | 0.0232 | 0.0041 | 0.0208 | 0.0040 | 0.0199 | 0.0040 | 0.0192 | ||
T=1.5 | (30, 20, 15) | 0.0401 | 0.0067 | 0.0354 | 0.0066 | 0.0333 | 0.0065 | 0.0318 | |
(40, 20, 15) | 0.0469 | 0.0050 | 0.0420 | 0.0050 | 0.0392 | 0.0049 | 0.0371 | ||
(60, 30, 20) | 0.0254 | 0.0045 | 0.0224 | 0.0044 | 0.0214 | 0.0043 | 0.0205 | ||
EB | |||||||||
Sch-I | T=0.3 | (30, 20, 15) | 0.0556 | 0.0107 | 0.0453 | 0.0083 | 0.0378 | 0.0038 | 0.0247 |
(40, 20, 15) | 0.0338 | 0.0057 | 0.0263 | 0.0039 | 0.0204 | 0.0006 | 0.0095 | ||
(60, 30, 20) | 0.0248 | 0.0047 | 0.0194 | 0.0032 | 0.0150 | 0.0003 | 0.0069 | ||
T=0.7 | (30, 20, 15) | 0.0335 | 0.0084 | 0.0246 | 0.0061 | 0.0194 | 0.0015 | 0.0096 | |
(40, 20, 15) | 0.0446 | 0.0077 | 0.0333 | 0.0059 | 0.0285 | 0.0025 | 0.0198 | ||
(60, 30, 20) | 0.0269 | 0.0064 | 0.0210 | 0.0050 | 0.0178 | 0.0021 | 0.0118 | ||
T=1.5 | (30, 20, 15) | 0.0426 | 0.0090 | 0.0324 | 0.0067 | 0.0273 | 0.0022 | 0.0181 | |
(40, 20, 15) | 0.0439 | 0.0092 | 0.0337 | 0.0074 | 0.0291 | 0.0041 | 0.0205 | ||
(60, 30, 20) | 0.0319 | 0.0063 | 0.0260 | 0.0048 | 0.0229 | 0.0020 | 0.0171 | ||
Sch-II | T=0.3 | (30, 20, 15) | 0.0592 | 0.0104 | 0.0480 | 0.0081 | 0.0403 | 0.0036 | 0.0272 |
(40, 20, 15) | 0.0350 | 0.0081 | 0.0258 | 0.0064 | 0.0200 | 0.0030 | 0.0093 | ||
(60, 30, 20) | 0.0262 | 0.0073 | 0.0200 | 0.0058 | 0.0157 | 0.0030 | 0.0077 | ||
T=0.7 | (30, 20, 15) | 0.0438 | 0.0082 | 0.0348 | 0.0059 | 0.0293 | 0.0015 | 0.0194 | |
(40, 20, 15) | 0.0426 | 0.0073 | 0.0339 | 0.0056 | 0.0291 | 0.0023 | 0.0203 | ||
(60, 30, 20) | 0.0305 | 0.0056 | 0.0224 | 0.0042 | 0.0192 | 0.0014 | 0.0133 | ||
T=1.5 | (30, 20, 15) | 0.0473 | 0.0086 | 0.0378 | 0.0062 | 0.0327 | 0.0018 | 0.0234 | |
(40, 20, 15) | 0.0494 | 0.0045 | 0.0384 | 0.0028 | 0.0335 | 0.0005 | 0.0248 | ||
(60, 30, 20) | 0.0239 | 0.0031 | 0.0184 | 0.0017 | 0.0153 | 0.0011 | 0.0095 | ||
Sch-III | T=0.3 | (30, 20, 15) | 0.0592 | 0.0104 | 0.0480 | 0.0081 | 0.0403 | 0.0036 | 0.0272 |
(40, 20, 15) | 0.0701 | 0.0073 | 0.0608 | 0.0057 | 0.0534 | 0.0026 | 0.0413 | ||
(60, 30, 20) | 0.0404 | 0.0066 | 0.0353 | 0.0051 | 0.0310 | 0.0024 | 0.0233 | ||
T=0.7 | (30, 20, 15) | 0.0516 | 0.0070 | 0.0422 | 0.0048 | 0.0360 | 0.0005 | 0.0252 | |
(40, 20, 15) | 0.0656 | 0.0084 | 0.0581 | 0.0068 | 0.0510 | 0.0037 | 0.0391 | ||
(60, 30, 20) | 0.0388 | 0.0054 | 0.0332 | 0.0040 | 0.0291 | 0.0013 | 0.0215 | ||
T=1.5 | (30, 20, 15) | 0.0561 | 0.0073 | 0.0464 | 0.0050 | 0.0402 | 0.0007 | 0.0296 | |
(40, 20, 15) | 0.0685 | 0.0077 | 0.0595 | 0.0061 | 0.0524 | 0.0030 | 0.0404 | ||
(60, 30, 20) | 0.0444 | 0.0082 | 0.0375 | 0.0068 | 0.0332 | 0.0041 | 0.0256 |
Bayesian | |||||||||
\widehat{S(t) }_{BS} | \widehat{S(t) }_{BL} | \widehat{S(t) }_{BE} | |||||||
Sch. | T | (n, m, k) | \widehat{S(t) }_{ML} | IP | NIP | IP | NIP | IP | NIP |
MSE | |||||||||
Sch-I | T=0.3 | (30, 20, 15) | 0.0005 | 3.90\times10^{-6} | 0.0016 | 3.90\times10^{-6} | 0.0014 | 2.60\times10^{-6} | 0.0003 |
(40, 20, 15) | 0.0010 | 3.90\times10^{-6} | 0.0026 | 3.90\times10^{-6} | 0.0025 | 1.30\times10^{-6} | 0.0004 | ||
(60, 30, 20) | 0.0007 | 3.90\times10^{-6} | 0.0016 | 3.90\times10^{-6} | 0.0014 | 2.60\times10^{-6} | 0.0004 | ||
T=0.7 | (30, 20, 15) | 0.0005 | 5.20\times10^{-6} | 0.0012 | 5.20\times10^{-6} | 0.0010 | 2.60\times10^{-6} | 0.0003 | |
(40, 20, 15) | 0.0007 | 3.90\times10^{-6} | 0.0014 | 3.90\times10^{-6} | 0.0014 | 2.60\times10^{-6} | 0.0004 | ||
(60, 30, 20) | 0.0003 | 5.20\times10^{-6} | 0.0007 | 5.20\times10^{-6} | 0.0007 | 2.60\times10^{-6} | 0.0003 | ||
T=1.5 | (30, 20, 15) | 0.0003 | 3.90\times10^{-6} | 0.0008 | 3.90\times10^{-6} | 0.0008 | 2.60\times10^{-6} | 0.0003 | |
(40, 20, 15) | 0.0005 | 5.20\times10^{-6} | 0.0012 | 5.20\times10^{-6} | 0.0012 | 2.60\times10^{-6} | 0.0004 | ||
(60, 30, 20) | 0.0003 | 5.20\times10^{-6} | 0.0005 | 5.20\times10^{-6} | 0.0005 | 2.60\times10^{-6} | 0.0001 | ||
Sch-II | T=0.3 | (30, 20, 15) | 0.0007 | 3.90\times10^{-6} | 0.0018 | 3.90\times10^{-6} | 0.0017 | 2.60\times10^{-6} | 0.0004 |
(40, 20, 15) | 0.0012 | 3.90\times10^{-6} | 0.0029 | 3.90\times10^{-6} | 0.0027 | 2.60\times10^{-6} | 0.0005 | ||
(60, 30, 20) | 0.0008 | 3.90\times10^{-6} | 0.0017 | 3.90\times10^{-6} | 0.0016 | 2.60\times10^{-6} | 0.0005 | ||
T=0.7 | (30, 20, 15) | 0.0005 | 5.20\times10^{-6} | 0.0010 | 5.20\times10^{-6} | 0.0010 | 2.60\times10^{-6} | 0.0004 | |
(40, 20, 15) | 0.0005 | 3.90\times10^{-6} | 0.0012 | 3.90\times10^{-6} | 0.0012 | 2.60\times10^{-6} | 0.0003 | ||
(60, 30, 20) | 0.0003 | 5.20\times10^{-6} | 0.0005 | 5.20\times10^{-6} | 0.0005 | 2.60\times10^{-6} | 0.0001 | ||
T=1.5 | (30, 20, 15) | 0.0004 | 5.20\times10^{-6} | 0.0008 | 5.20\times10^{-6} | 0.0008 | 2.60\times10^{-6} | 0.0003 | |
(40, 20, 15) | 0.0004 | 3.90\times10^{-6} | 0.0009 | 3.90\times10^{-6} | 0.0009 | 2.60\times10^{-6} | 0.0003 | ||
(60, 30, 20) | 0.0003 | 5.20\times10^{-6} | 0.0004 | 5.20\times10^{-6} | 0.0004 | 2.60\times10^{-6} | 0.0001 | ||
Sch-III | T=0.3 | (30, 20, 15) | 0.0007 | 3.90\times10^{-6} | 0.0018 | 3.90\times10^{-6} | 0.0017 | 2.60\times10^{-6} | 0.0004 |
(40, 20, 15) | 0.0007 | 2.60\times10^{-6} | 0.0017 | 2.60\times10^{-6} | 0.0016 | 1.30\times10^{-6} | 0.0004 | ||
(60, 30, 20) | 0.0004 | 3.90\times10^{-6} | 0.0008 | 3.90\times10^{-6} | 0.0008 | 2.60\times10^{-6} | 0.0003 | ||
T=0.7 | (30, 20, 15) | 0.0003 | 3.90\times10^{-6} | 0.0007 | 3.90\times10^{-6} | 0.0007 | 2.60\times10^{-6} | 0.0003 | |
(40, 20, 15) | 0.0007 | 3.90\times10^{-6} | 0.0017 | 3.90\times10^{-6} | 0.0016 | 1.30\times10^{-6} | 0.0004 | ||
(60, 30, 20) | 0.0003 | 3.90\times10^{-6} | 0.0007 | 3.90\times10^{-6} | 0.0007 | 2.60\times10^{-6} | 0.0001 | ||
T=1.5 | (30, 20, 15) | 0.0003 | 3.90\times10^{-6} | 0.0007 | 3.90\times10^{-6} | 0.0007 | 2.60\times10^{-6} | 0.0001 | |
(40, 20, 15) | 0.0008 | 3.90\times10^{-6} | 0.0018 | 3.90\times10^{-6} | 0.0017 | 1.30\times10^{-6} | 0.0004 | ||
(60, 30, 20) | 0.0003 | 3.90\times10^{-6} | 0.0007 | 3.90\times10^{-6} | 0.0007 | 2.60\times10^{-6} | 0.0001 | ||
EB | |||||||||
Sch-I | T=0.3 | (30, 20, 15) | 0.0070 | 0.0014 | 0.0270 | 0.0014 | 0.0260 | 0.0007 | 0.0014 |
(40, 20, 15) | 0.0120 | 0.0014 | 0.0350 | 0.0014 | 0.0340 | 0.0007 | 0.0003 | ||
(60, 30, 20) | 0.0090 | 0.0013 | 0.0250 | 0.0013 | 0.0250 | 0.0007 | 0.0004 | ||
T=0.7 | (30, 20, 15) | 0.0069 | 0.0014 | 0.0220 | 0.0013 | 0.0210 | 0.0007 | 0.0009 | |
(40, 20, 15) | 0.0073 | 0.0013 | 0.0230 | 0.0013 | 0.0230 | 0.0007 | 0.0007 | ||
(60, 30, 20) | 0.0049 | 0.0014 | 0.0150 | 0.0013 | 0.0150 | 0.0005 | 0.0003 | ||
T=1.5 | (30, 20, 15) | 0.0045 | 0.0012 | 0.0170 | 0.0012 | 0.0170 | 0.0008 | 0.0004 | |
(40, 20, 15) | 0.0069 | 0.0014 | 0.0220 | 0.0014 | 0.0220 | 0.0007 | 0.0001 | ||
(60, 30, 20) | 0.0032 | 0.0012 | 0.0120 | 0.0012 | 0.0120 | 0.0007 | 0.0008 | ||
Sch-II | T=0.3 | (30, 20, 15) | 0.0082 | 0.0014 | 0.0280 | 0.0014 | 0.0280 | 0.0007 | 0.0003 |
(40, 20, 15) | 0.0130 | 0.0014 | 0.0360 | 0.0014 | 0.0350 | 0.0007 | 0.0010 | ||
(60, 30, 20) | 0.0096 | 0.0014 | 0.0250 | 0.0014 | 0.0250 | 0.0007 | 0.0010 | ||
T=0.7 | (30, 20, 15) | 0.0055 | 0.0012 | 0.0190 | 0.0012 | 0.0190 | 0.0008 | 0.0010 | |
(40, 20, 15) | 0.0062 | 0.0013 | 0.0210 | 0.0013 | 0.0210 | 0.0007 | 0.0008 | ||
(60, 30, 20) | 0.0039 | 0.0013 | 0.0140 | 0.0013 | 0.0140 | 0.0007 | 0.0003 | ||
T=1.5 | (30, 20, 15) | 0.0045 | 0.0013 | 0.0170 | 0.0012 | 0.0160 | 0.0008 | 0.0003 | |
(40, 20, 15) | 0.0038 | 0.0012 | 0.0190 | 0.0012 | 0.0180 | 0.0008 | 0.0021 | ||
(60, 30, 20) | 0.0034 | 0.0013 | 0.0130 | 0.0013 | 0.0120 | 0.0007 | 0.0008 | ||
Sch-III | T=0.3 | (30, 20, 15) | 0.0082 | 0.0014 | 0.0280 | 0.0014 | 0.0280 | 0.0007 | 0.0003 |
(40, 20, 15) | 0.0074 | 0.0013 | 0.0260 | 0.0013 | 0.0260 | 0.0008 | 0.0025 | ||
(60, 30, 20) | 0.0055 | 0.0013 | 0.0170 | 0.0013 | 0.0170 | 0.0007 | 0.0010 | ||
T=0.7 | (30, 20, 15) | 0.0035 | 0.0013 | 0.0170 | 0.0012 | 0.0160 | 0.0008 | 0.0020 | |
(40, 20, 15) | 0.0070 | 0.0013 | 0.0260 | 0.0013 | 0.0260 | 0.0008 | 0.0027 | ||
(60, 30, 20) | 0.0041 | 0.0013 | 0.0150 | 0.0013 | 0.0150 | 0.0007 | 0.0018 | ||
T=1.5 | (30, 20, 15) | 0.0039 | 0.0012 | 0.0170 | 0.0012 | 0.0160 | 0.0008 | 0.0017 | |
(40, 20, 15) | 0.0080 | 0.0014 | 0.0270 | 0.0013 | 0.0260 | 0.0007 | 0.0020 | ||
(60, 30, 20) | 0.0042 | 0.0013 | 0.0150 | 0.0013 | 0.0150 | 0.0007 | 0.0018 |
Bayesian | |||||||||
\widehat{H(t)}_{BS} | \widehat{H(t)}_{BL} | \widehat{H(t)}_{BE} | |||||||
Sch. | T | (n, m, k) | \widehat{H(t) }_{ML} | IP | NIP | IP | NIP | IP | NIP |
MSE | |||||||||
Sch-I | T=0.3 | (30, 20, 15) | 0.0250 | 4.20\times10^{-5} | 0.0390 | 4.20\times10^{-5} | 0.0320 | 4.20\times10^{-5} | 0.0200 |
(40, 20, 15) | 0.0220 | 4.20\times10^{-5} | 0.0350 | 4.20\times10^{-5} | 0.0300 | 4.20\times10^{-5} | 0.0190 | ||
(60, 30, 20) | 0.0250 | 5.60\times10^{-5} | 0.0370 | 5.60\times10^{-5} | 0.0270 | 5.60\times10^{-5} | 0.0240 | ||
T=0.7 | (30, 20, 15) | 0.0110 | 5.60\times10^{-5} | 0.0130 | 5.60\times10^{-5} | 0.0130 | 7.00\times10^{-5} | 0.0095 | |
(40, 20, 15) | 0.0290 | 5.60\times10^{-5} | 0.0400 | 5.60\times10^{-5} | 0.0330 | 5.60\times10^{-5} | 0.0220 | ||
(60, 30, 20) | 0.0084 | 8.40\times10^{-5} | 0.0110 | 8.40\times10^{-5} | 0.0100 | 8.40\times10^{-5} | 0.0081 | ||
T=1.5 | (30, 20, 15) | 0.0120 | 7.00\times10^{-5} | 0.0150 | 7.00\times10^{-5} | 0.0140 | 7.00\times10^{-5} | 0.0110 | |
(40, 20, 15) | 0.0240 | 5.60\times10^{-5} | 0.0350 | 5.60\times10^{-5} | 0.0300 | 5.60\times10^{-5} | 0.0210 | ||
(60, 30, 20) | 0.0100 | 7.00\times10^{-5} | 0.0130 | 8.40\times10^{-5} | 0.0120 | 8.40\times10^{-5} | 0.0095 | ||
Sch-II | T=0.3 | (30, 20, 15) | 0.0260 | 4.20\times10^{-5} | 0.0390 | 4.20\times10^{-5} | 0.0340 | 5.60\times10^{-5} | 0.0220 |
(40, 20, 15) | 0.0220 | 4.20\times10^{-5} | 0.0340 | 4.20\times10^{-5} | 0.0300 | 4.20\times10^{-5} | 0.0190 | ||
(60, 30, 20) | 0.0120 | 5.60\times10^{-5} | 0.0170 | 5.60\times10^{-5} | 0.0150 | 5.60\times10^{-5} | 0.0110 | ||
T=0.7 | (30, 20, 15) | 0.0130 | 5.60\times10^{-5} | 0.0180 | 5.60\times10^{-5} | 0.0170 | 7.00\times10^{-5} | 0.0120 | |
(40, 20, 15) | 0.0190 | 5.60\times10^{-5} | 0.0280 | 5.60\times10^{-5} | 0.0250 | 5.60\times10^{-5} | 0.0160 | ||
(60, 30, 20) | 0.0086 | 7.00\times10^{-5} | 0.0110 | 7.00\times10^{-5} | 0.0110 | 8.40\times10^{-5} | 0.0081 | ||
T=1.5 | (30, 20, 15) | 0.0130 | 7.00\times10^{-5} | 0.0170 | 7.00\times10^{-5} | 0.0160 | 7.00\times10^{-5} | 0.0120 | |
(40, 20, 15) | 0.0260 | 4.20\times10^{-5} | 0.0420 | 4.20\times10^{-5} | 0.0350 | 5.60\times10^{-5} | 0.0230 | ||
(60, 30, 20) | 0.0076 | 7.00\times10^{-5} | 0.0100 | 7.00\times10^{-5} | 0.0096 | 7.00\times10^{-5} | 0.0074 | ||
Sch-III | T=0.3 | (30, 20, 15) | 0.0260 | 4.20\times10^{-5} | 0.0390 | 4.20\times10^{-5} | 0.0340 | 5.60\times10^{-5} | 0.0220 |
(40, 20, 15) | 0.0750 | 4.20\times10^{-5} | 0.2200 | 4.20\times10^{-5} | 0.1100 | 4.20\times10^{-5} | 0.0680 | ||
(60, 30, 20) | 0.0150 | 5.60\times10^{-5} | 0.0230 | 5.60\times10^{-5} | 0.0210 | 5.60\times10^{-5} | 0.0140 | ||
T=0.7 | (30, 20, 15) | 0.0260 | 5.60\times10^{-5} | 0.0430 | 5.60\times10^{-5} | 0.0340 | 5.60\times10^{-5} | 0.0240 | |
(40, 20, 15) | 0.0660 | 4.20\times10^{-5} | 0.1500 | 4.20\times10^{-5} | 0.0910 | 4.20\times10^{-5} | 0.0570 | ||
(60, 30, 20) | 0.0160 | 5.60\times10^{-5} | 0.0230 | 5.60\times10^{-5} | 0.0210 | 5.60\times10^{-5} | 0.0140 | ||
T=1.5 | (30, 20, 15) | 0.0250 | 5.60\times10^{-5} | 0.0430 | 5.60\times10^{-5} | 0.0340 | 5.60\times10^{-5} | 0.0230 | |
(40, 20, 15) | 0.0870 | 4.20\times10^{-5} | 0.2000 | 4.20\times10^{-5} | 0.1000 | 4.20\times10^{-5} | 0.0700 | ||
(60, 30, 20) | 0.0170 | 5.60\times10^{-5} | 0.0260 | 5.60\times10^{-5} | 0.0230 | 5.60\times10^{-5} | 0.0150 | ||
EB | |||||||||
Sch-I | T=0.3 | (30, 20, 15) | 0.0600 | 1.70\times10^{-4} | 0.0880 | 3.20\times10^{-4} | 0.0800 | 0.0027 | 0.0320 |
(40, 20, 15) | 0.0510 | 3.60\times10^{-4} | 0.0810 | 5.20\times10^{-4} | 0.0730 | 0.0028 | 0.0240 | ||
(60, 30, 20) | 0.0360 | 2.80\times10^{-5} | 0.0540 | 1.10\times10^{-4} | 0.0490 | 0.0024 | 0.0180 | ||
T=0.7 | (30, 20, 15) | 0.0330 | 3.80\times10^{-4} | 0.0400 | 5.20\times10^{-4} | 0.0370 | 0.0028 | 0.0110 | |
(40, 20, 15) | 0.0610 | 9.80\times10^{-5} | 0.0810 | 5.60\times10^{-5} | 0.0740 | 0.0024 | 0.0370 | ||
(60, 30, 20) | 0.0290 | 1.10\times10^{-5} | 0.0370 | 1.50\times10^{-4} | 0.0350 | 0.0024 | 0.0160 | ||
T=1.5 | (30, 20, 15) | 0.0400 | 2.40\times10^{-4} | 0.0480 | 9.80\times10^{-5} | 0.0450 | 0.0021 | 0.0200 | |
(40, 20, 15) | 0.0550 | 1.50\times10^{-4} | 0.0740 | 3.10\times10^{-4} | 0.0680 | 0.0025 | 0.0330 | ||
(60, 30, 20) | 0.0340 | 5.90\times10^{-4} | 0.0440 | 4.50\times10^{-4} | 0.0420 | 0.0017 | 0.0230 | ||
Sch-II | T=0.3 | (30, 20, 15) | 0.0640 | 3.40\times10^{-4} | 0.0920 | 4.90\times10^{-4} | 0.0840 | 0.0028 | 0.0350 |
(40, 20, 15) | 0.0510 | 3.50\times10^{-4} | 0.0780 | 5.00\times10^{-4} | 0.0700 | 0.0028 | 0.0230 | ||
(60, 30, 20) | 0.0330 | 1.40\times10^{-5} | 0.0490 | 1.40\times10^{-4} | 0.0450 | 0.0024 | 0.0140 | ||
T=0.7 | (30, 20, 15) | 0.0440 | 3.80\times10^{-4} | 0.0550 | 2.20\times10^{-4} | 0.0510 | 0.0021 | 0.0240 | |
(40, 20, 15) | 0.0550 | 4.20\times10^{-5} | 0.0770 | 1.10\times10^{-4} | 0.0720 | 0.0024 | 0.0340 | ||
(60, 30, 20) | 0.0330 | 4.90\times10^{-4} | 0.0410 | 3.50\times10^{-4} | 0.0390 | 0.0018 | 0.0190 | ||
T=1.5 | (30, 20, 15) | 0.0460 | 2.50\times10^{-4} | 0.0570 | 1.10\times10^{-4} | 0.0540 | 0.0021 | 0.0280 | |
(40, 20, 15) | 0.0670 | 4.20\times10^{-4} | 0.0920 | 2.80\times10^{-4} | 0.0850 | 0.0020 | 0.0450 | ||
(60, 30, 20) | 0.0280 | 1.30\times10^{-4} | 0.0370 | 1.10\times10^{-5} | 0.0350 | 0.0023 | 0.0160 | ||
Sch-III | T=0.3 | (30, 20, 15) | 0.0640 | 3.40\times10^{-4} | 0.0920 | 4.90\times10^{-4} | 0.0840 | 0.0028 | 0.0350 |
(40, 20, 15) | 0.1100 | 3.40\times10^{-4} | 0.2000 | 1.80\times10^{-4} | 0.1600 | 0.0021 | 0.0860 | ||
(60, 30, 20) | 0.0460 | 3.90\times10^{-4} | 0.0700 | 2.40\times10^{-4} | 0.0650 | 0.0020 | 0.0340 | ||
T=0.7 | (30, 20, 15) | 0.0560 | 1.30\times10^{-4} | 0.0770 | 1.10\times10^{-5} | 0.0710 | 0.0024 | 0.0370 | |
(40, 20, 15) | 0.0970 | 2.90\times10^{-4} | 0.1700 | 1.40\times10^{-4} | 0.1400 | 0.0023 | 0.0740 | ||
(60, 30, 20) | 0.0460 | 3.60\times10^{-4} | 0.0680 | 2.10\times10^{-4} | 0.0640 | 0.0021 | 0.0330 | ||
T=1.5 | (30, 20, 15) | 0.0600 | 1.10\times10^{-4} | 0.0830 | 4.20\times10^{-5} | 0.0760 | 0.0024 | 0.0410 | |
(40, 20, 15) | 0.1100 | 8.40\times10^{-5} | 0.1800 | 7.00\times10^{-5} | 0.1500 | 0.0024 | 0.0810 | ||
(60, 30, 20) | 0.0500 | 5.70\times10^{-4} | 0.0730 | 4.20\times10^{-4} | 0.0680 | 0.0018 | 0.0370 |
\widehat{\lambda}_{B} | |||||||||||||
\widehat{\lambda}_{ML} | IP | NIP | |||||||||||
90\% | 95\% | 90\% | 95\% | 90\% | 95\% | ||||||||
T | (n, m, k) | AL | CP | AL | CP | AL | CP | AL | CP | AL | CP | AL | CP |
Sch. I | |||||||||||||
T=0.3 | (30, 20, 15) | 2.733 | 0.918 | 3.161 | 0.950 | 0.911 | 0.940 | 1.078 | 0.965 | 2.683 | 0.863 | 3.138 | 0.928 |
(40, 20, 15) | 2.871 | 0.930 | 3.309 | 0.945 | 0.828 | 0.947 | 0.986 | 0.970 | 2.810 | 0.879 | 3.317 | 0.925 | |
(60, 30, 20) | 2.135 | 0.907 | 2.544 | 0.941 | 0.769 | 0.948 | 0.920 | 0.969 | 2.098 | 0.867 | 2.511 | 0.922 | |
T=0.7 | (30, 20, 15) | 1.665 | 0.873 | 1.935 | 0.943 | 0.741 | 0.934 | 0.877 | 0.965 | 1.614 | 0.851 | 1.864 | 0.927 |
(40, 20, 15) | 2.012 | 0.924 | 2.417 | 0.935 | 0.674 | 0.945 | 0.803 | 0.964 | 1.956 | 0.877 | 2.360 | 0.892 | |
(60, 30, 20) | 1.393 | 0.878 | 1.638 | 0.946 | 0.623 | 0.931 | 0.737 | 0.969 | 1.355 | 0.856 | 1.596 | 0.918 | |
T=1.5 | (30, 20, 15) | 1.420 | 0.901 | 1.692 | 0.942 | 0.658 | 0.945 | 0.780 | 0.965 | 1.378 | 0.871 | 1.634 | 0.927 |
(40, 20, 15) | 1.748 | 0.931 | 2.067 | 0.945 | 0.602 | 0.946 | 0.708 | 0.965 | 1.707 | 0.864 | 2.015 | 0.907 | |
(60, 30, 20) | 1.208 | 0.907 | 1.461 | 0.940 | 0.554 | 0.937 | 0.656 | 0.965 | 1.173 | 0.889 | 1.420 | 0.913 | |
Sch. II | |||||||||||||
T=0.3 | (30, 20, 15) | 2.727 | 0.908 | 3.181 | 0.940 | 0.909 | 0.930 | 1.079 | 0.965 | 2.653 | 0.858 | 3.143 | 0.912 |
(40, 20, 15) | 2.917 | 0.920 | 3.260 | 0.937 | 0.824 | 0.955 | 0.972 | 0.965 | 2.883 | 0.867 | 3.243 | 0.923 | |
(60, 30, 20) | 2.098 | 0.899 | 2.499 | 0.930 | 0.766 | 0.946 | 0.908 | 0.968 | 2.047 | 0.865 | 2.456 | 0.907 | |
T=0.7 | (30, 20, 15) | 1.648 | 0.886 | 1.984 | 0.942 | 0.738 | 0.944 | 0.876 | 0.961 | 1.592 | 0.858 | 1.930 | 0.917 |
(40, 20, 15) | 2.328 | 0.905 | 2.408 | 0.943 | 0.673 | 0.944 | 0.795 | 0.964 | 2.296 | 0.848 | 2.355 | 0.913 | |
(60, 30, 20) | 1.367 | 0.901 | 1.661 | 0.941 | 0.616 | 0.947 | 0.734 | 0.970 | 1.334 | 0.875 | 1.612 | 0.913 | |
T=1.5 | (30, 20, 15) | 1.481 | 0.879 | 1.726 | 0.935 | 0.654 | 0.934 | 0.782 | 0.959 | 1.455 | 0.858 | 1.683 | 0.907 |
(40, 20, 15) | 1.866 | 0.938 | 2.224 | 0.951 | 0.596 | 0.948 | 0.710 | 0.966 | 1.811 | 0.863 | 2.189 | 0.922 | |
(60, 30, 20) | 1.203 | 0.900 | 1.442 | 0.946 | 0.547 | 0.945 | 0.653 | 0.965 | 1.169 | 0.881 | 1.407 | 0.913 | |
Sch. III | |||||||||||||
T=0.3 | (30, 20, 15) | 2.425 | 0.915 | 3.181 | 0.940 | 0.887 | 0.927 | 1.079 | 0.965 | 2.382 | 0.879 | 3.143 | 0.912 |
(40, 20, 15) | 3.676 | 0.928 | 4.329 | 0.951 | 0.798 | 0.948 | 0.945 | 0.974 | 3.932 | 0.857 | 4.748 | 0.912 | |
(60, 30, 20) | 2.083 | 0.913 | 2.451 | 0.945 | 0.742 | 0.951 | 0.875 | 0.964 | 2.057 | 0.854 | 2.459 | 0.911 | |
T=0.7 | (30, 20, 15) | 1.771 | 0.919 | 2.142 | 0.949 | 0.721 | 0.940 | 0.855 | 0.966 | 1.727 | 0.866 | 2.120 | 0.920 |
(40, 20, 15) | 3.077 | 0.924 | 3.378 | 0.952 | 0.656 | 0.942 | 0.773 | 0.968 | 3.272 | 0.844 | 3.600 | 0.916 | |
(60, 30, 20) | 1.670 | 0.913 | 1.993 | 0.949 | 0.601 | 0.949 | 0.715 | 0.967 | 1.669 | 0.859 | 1.986 | 0.917 | |
T=1.5 | (30, 20, 15) | 1.544 | 0.924 | 1.920 | 0.951 | 0.644 | 0.925 | 0.762 | 0.970 | 1.512 | 0.886 | 1.913 | 0.907 |
(40, 20, 15) | 2.793 | 0.927 | 3.096 | 0.943 | 0.580 | 0.948 | 0.685 | 0.967 | 2.910 | 0.837 | 3.291 | 0.896 | |
(60, 30, 20) | 1.517 | 0.913 | 1.792 | 0.955 | 0.534 | 0.937 | 0.634 | 0.957 | 1.502 | 0.844 | 1.792 | 0.917 |
Bayesian | |||||||||||||
\widehat{\mu}_{ML} | IP | NIP | |||||||||||
90\% | 95\% | 90\% | 95\% | 90\% | 95\% | ||||||||
T | (n, m, k) | AL | CP | AL | CP | AL | CP | AL | CP | AL | CP | AL | CP |
Sch. I | |||||||||||||
T=0.3 | (30, 20, 15) | 0.933 | 0.901 | 1.101 | 0.983 | 0.456 | 0.955 | 0.541 | 0.989 | 0.910 | 0.891 | 1.055 | 0.961 |
(40, 20, 15) | 0.833 | 0.904 | 0.979 | 0.968 | 0.393 | 0.940 | 0.466 | 0.991 | 0.804 | 0.876 | 0.937 | 0.951 | |
(60, 30, 20) | 0.710 | 0.915 | 0.837 | 0.963 | 0.366 | 0.952 | 0.427 | 0.987 | 0.695 | 0.890 | 0.805 | 0.931 | |
T=0.7 | (30, 20, 15) | 0.726 | 0.917 | 0.855 | 0.962 | 0.423 | 0.963 | 0.496 | 0.984 | 0.706 | 0.898 | 0.819 | 0.942 |
(40, 20, 15) | 0.688 | 0.916 | 0.814 | 0.960 | 0.364 | 0.957 | 0.432 | 0.990 | 0.671 | 0.896 | 0.783 | 0.931 | |
(60, 30, 20) | 0.556 | 0.895 | 0.661 | 0.945 | 0.335 | 0.939 | 0.396 | 0.986 | 0.542 | 0.882 | 0.642 | 0.927 | |
T=1.5 | (30, 20, 15) | 0.645 | 0.918 | 0.766 | 0.959 | 0.387 | 0.952 | 0.457 | 0.983 | 0.632 | 0.901 | 0.739 | 0.938 |
(40, 20, 15) | 0.614 | 0.928 | 0.735 | 0.966 | 0.331 | 0.954 | 0.393 | 0.970 | 0.594 | 0.893 | 0.707 | 0.930 | |
(60, 30, 20) | 0.500 | 0.917 | 0.599 | 0.949 | 0.306 | 0.954 | 0.363 | 0.987 | 0.488 | 0.899 | 0.578 | 0.927 | |
Sch. II | |||||||||||||
T=0.3 | (30, 20, 15) | 0.931 | 0.908 | 1.106 | 0.973 | 0.455 | 0.955 | 0.537 | 0.990 | 0.900 | 0.893 | 1.061 | 0.935 |
(40, 20, 15) | 0.820 | 0.905 | 0.971 | 0.971 | 0.388 | 0.955 | 0.462 | 0.983 | 0.797 | 0.882 | 0.929 | 0.949 | |
(60, 30, 20) | 0.700 | 0.918 | 0.834 | 0.975 | 0.362 | 0.962 | 0.426 | 0.982 | 0.681 | 0.905 | 0.798 | 0.949 | |
T=0.7 | (30, 20, 15) | 0.719 | 0.912 | 0.858 | 0.972 | 0.417 | 0.958 | 0.494 | 0.991 | 0.703 | 0.888 | 0.834 | 0.952 |
(40, 20, 15) | 0.757 | 0.918 | 0.816 | 0.970 | 0.358 | 0.957 | 0.423 | 0.985 | 0.735 | 0.899 | 0.785 | 0.956 | |
(60, 30, 20) | 0.555 | 0.907 | 0.662 | 0.969 | 0.334 | 0.960 | 0.391 | 0.983 | 0.545 | 0.879 | 0.637 | 0.947 | |
T=1.5 | (30, 20, 15) | 0.654 | 0.909 | 0.768 | 0.966 | 0.384 | 0.952 | 0.456 | 0.984 | 0.640 | 0.874 | 0.744 | 0.933 |
(40, 20, 15) | 0.633 | 0.907 | 0.751 | 0.971 | 0.331 | 0.960 | 0.388 | 0.980 | 0.615 | 0.874 | 0.721 | 0.954 | |
(60, 30, 20) | 0.506 | 0.890 | 0.593 | 0.971 | 0.307 | 0.939 | 0.357 | 0.988 | 0.490 | 0.872 | 0.578 | 0.953 | |
Sch. III | |||||||||||||
T=0.3 | (30, 20, 15) | 0.915 | 0.926 | 1.106 | 0.973 | 0.447 | 0.941 | 0.537 | 0.990 | 0.891 | 0.891 | 1.061 | 0.935 |
(40, 20, 15) | 0.918 | 0.906 | 1.080 | 0.970 | 0.377 | 0.942 | 0.445 | 0.987 | 0.884 | 0.862 | 1.031 | 0.937 | |
(60, 30, 20) | 0.693 | 0.925 | 0.832 | 0.972 | 0.351 | 0.960 | 0.417 | 0.990 | 0.675 | 0.900 | 0.801 | 0.934 | |
T=0.7 | (30, 20, 15) | 0.772 | 0.922 | 0.914 | 0.980 | 0.415 | 0.955 | 0.485 | 0.997 | 0.750 | 0.902 | 0.884 | 0.964 |
(40, 20, 15) | 0.834 | 0.925 | 0.990 | 0.974 | 0.345 | 0.950 | 0.411 | 0.987 | 0.806 | 0.876 | 0.941 | 0.935 | |
(60, 30, 20) | 0.641 | 0.919 | 0.760 | 0.968 | 0.326 | 0.955 | 0.383 | 0.992 | 0.623 | 0.890 | 0.729 | 0.947 | |
T=1.5 | (30, 20, 15) | 0.704 | 0.921 | 0.842 | 0.971 | 0.382 | 0.942 | 0.446 | 0.992 | 0.686 | 0.896 | 0.808 | 0.947 |
(40, 20, 15) | 0.773 | 0.914 | 0.911 | 0.963 | 0.318 | 0.956 | 0.377 | 0.979 | 0.739 | 0.878 | 0.860 | 0.923 | |
(60, 30, 20) | 0.589 | 0.928 | 0.702 | 0.970 | 0.297 | 0.949 | 0.354 | 0.987 | 0.573 | 0.904 | 0.677 | 0.940 |
\widehat{S(t) }_{B} | |||||||||||||
\widehat{S(t) }_{ML} | IP | NIP | |||||||||||
90\% | 95\% | 90\% | 95\% | 90\% | 95\% | ||||||||
T | (n, m, k) | AL | CP | AL | CP | AL | CP | AL | CP | AL | CP | AL | CP |
Sch. I | |||||||||||||
T=0.3 | (30, 20, 15) | 0.088 | 0.736 | 0.110 | 0.797 | 0.021 | 0.980 | 0.026 | 0.985 | 0.138 | 0.922 | 0.185 | 0.949 |
(40, 20, 15) | 0.113 | 0.771 | 0.140 | 0.813 | 0.022 | 0.987 | 0.026 | 0.993 | 0.164 | 0.919 | 0.215 | 0.948 | |
(60, 30, 20) | 0.091 | 0.803 | 0.110 | 0.849 | 0.021 | 0.976 | 0.026 | 0.978 | 0.123 | 0.907 | 0.158 | 0.945 | |
T=0.7 | (30, 20, 15) | 0.068 | 0.789 | 0.088 | 0.856 | 0.020 | 0.965 | 0.024 | 0.963 | 0.099 | 0.903 | 0.133 | 0.946 |
(40, 20, 15) | 0.069 | 0.727 | 0.092 | 0.799 | 0.020 | 0.954 | 0.024 | 0.948 | 0.105 | 0.926 | 0.144 | 0.919 | |
(60, 30, 20) | 0.057 | 0.812 | 0.069 | 0.875 | 0.019 | 0.980 | 0.023 | 0.985 | 0.075 | 0.914 | 0.097 | 0.929 | |
T=1.5 | (30, 20, 15) | 0.058 | 0.790 | 0.069 | 0.838 | 0.018 | 0.965 | 0.022 | 0.918 | 0.084 | 0.918 | 0.108 | 0.939 |
(40, 20, 15) | 0.066 | 0.758 | 0.083 | 0.809 | 0.018 | 0.954 | 0.022 | 0.985 | 0.098 | 0.909 | 0.132 | 0.934 | |
(60, 30, 20) | 0.049 | 0.833 | 0.058 | 0.856 | 0.018 | 0.980 | 0.021 | 0.903 | 0.066 | 0.948 | 0.083 | 0.929 | |
Sch. II | |||||||||||||
T=0.3 | (30, 20, 15) | 0.089 | 0.743 | 0.113 | 0.769 | 0.021 | 0.980 | 0.026 | 0.985 | 0.140 | 0.921 | 0.188 | 0.943 |
(40, 20, 15) | 0.111 | 0.754 | 0.143 | 0.802 | 0.021 | 0.965 | 0.026 | 0.963 | 0.159 | 0.904 | 0.215 | 0.954 | |
(60, 30, 20) | 0.092 | 0.814 | 0.110 | 0.859 | 0.021 | 0.954 | 0.026 | 0.948 | 0.125 | 0.921 | 0.156 | 0.934 | |
T=0.7 | (30, 20, 15) | 0.068 | 0.794 | 0.080 | 0.802 | 0.020 | 0.943 | 0.024 | 0.933 | 0.098 | 0.910 | 0.124 | 0.944 |
(40, 20, 15) | 0.105 | 0.730 | 0.088 | 0.802 | 0.020 | 0.932 | 0.024 | 0.918 | 0.150 | 0.912 | 0.139 | 0.940 | |
(60, 30, 20) | 0.055 | 0.821 | 0.066 | 0.836 | 0.019 | 0.980 | 0.023 | 0.985 | 0.074 | 0.913 | 0.094 | 0.930 | |
T=1.5 | (30, 20, 15) | 0.054 | 0.765 | 0.067 | 0.793 | 0.018 | 0.943 | 0.022 | 0.888 | 0.078 | 0.905 | 0.104 | 0.928 |
(40, 20, 15) | 0.063 | 0.735 | 0.073 | 0.781 | 0.018 | 0.932 | 0.022 | 0.985 | 0.096 | 0.895 | 0.123 | 0.950 | |
(60, 30, 20) | 0.048 | 0.827 | 0.059 | 0.884 | 0.018 | 0.980 | 0.021 | 0.873 | 0.064 | 0.913 | 0.085 | 0.934 | |
Sch. III | |||||||||||||
T=0.3 | (30, 20, 15) | 0.101 | 0.782 | 0.113 | 0.769 | 0.021 | 0.979 | 0.026 | 0.985 | 0.144 | 0.919 | 0.188 | 0.943 |
(40, 20, 15) | 0.089 | 0.668 | 0.114 | 0.730 | 0.021 | 0.943 | 0.026 | 0.933 | 0.132 | 0.888 | 0.180 | 0.926 | |
(60, 30, 20) | 0.070 | 0.778 | 0.085 | 0.808 | 0.021 | 0.932 | 0.025 | 0.918 | 0.093 | 0.901 | 0.120 | 0.936 | |
T=0.7 | (30, 20, 15) | 0.065 | 0.766 | 0.074 | 0.815 | 0.020 | 0.921 | 0.024 | 0.903 | 0.093 | 0.908 | 0.119 | 0.951 |
(40, 20, 15) | 0.088 | 0.684 | 0.105 | 0.758 | 0.020 | 0.910 | 0.024 | 0.888 | 0.129 | 0.891 | 0.170 | 0.933 | |
(60, 30, 20) | 0.063 | 0.803 | 0.074 | 0.830 | 0.019 | 0.980 | 0.023 | 0.985 | 0.083 | 0.906 | 0.107 | 0.937 | |
T=1.5 | (30, 20, 15) | 0.058 | 0.788 | 0.069 | 0.797 | 0.018 | 0.921 | 0.022 | 0.858 | 0.084 | 0.947 | 0.109 | 0.941 |
(40, 20, 15) | 0.078 | 0.684 | 0.099 | 0.747 | 0.018 | 0.910 | 0.023 | 0.985 | 0.116 | 0.883 | 0.158 | 0.927 | |
(60, 30, 20) | 0.057 | 0.787 | 0.069 | 0.803 | 0.018 | 0.980 | 0.022 | 0.903 | 0.077 | 0.899 | 0.098 | 0.939 |
\widehat{H(t) }_{B} | |||||||||||||
\widehat{H(t) }_{ML} | IP | NIP | |||||||||||
90\% | 95\% | 90\% | 95\% | 90\% | 95\% | ||||||||
T | (n, m, k) | AL | CP | AL | CP | AL | CP | AL | CP | AL | CP | AL | CP |
Sch. I | |||||||||||||
T=0.3 | (30, 20, 15) | 0.472 | 0.716 | 0.537 | 0.769 | 0.078 | 0.961 | 0.093 | 0.966 | 0.475 | 0.943 | 0.556 | 0.963 |
(40, 20, 15) | 0.473 | 0.750 | 0.533 | 0.784 | 0.078 | 0.980 | 0.092 | 1.000 | 0.474 | 0.933 | 0.559 | 0.956 | |
(60, 30, 20) | 0.344 | 0.781 | 0.408 | 0.819 | 0.078 | 1.000 | 0.091 | 1.000 | 0.345 | 0.922 | 0.416 | 0.959 | |
T=0.7 | (30, 20, 15) | 0.310 | 0.767 | 0.354 | 0.825 | 0.074 | 1.031 | 0.087 | 1.000 | 0.300 | 0.924 | 0.343 | 0.953 |
(40, 20, 15) | 0.344 | 0.707 | 0.417 | 0.770 | 0.067 | 0.963 | 0.080 | 0.955 | 0.339 | 0.946 | 0.417 | 0.925 | |
(60, 30, 20) | 0.256 | 0.790 | 0.301 | 0.843 | 0.072 | 1.000 | 0.086 | 1.000 | 0.249 | 0.926 | 0.294 | 0.937 | |
T=1.5 | (30, 20, 15) | 0.288 | 0.768 | 0.343 | 0.808 | 0.072 | 1.000 | 0.085 | 1.000 | 0.280 | 0.931 | 0.332 | 0.938 |
(40, 20, 15) | 0.332 | 0.737 | 0.397 | 0.780 | 0.067 | 0.975 | 0.079 | 0.995 | 0.330 | 0.930 | 0.395 | 0.942 | |
(60, 30, 20) | 0.243 | 0.810 | 0.296 | 0.825 | 0.071 | 1.000 | 0.084 | 1.000 | 0.235 | 0.959 | 0.290 | 0.931 | |
Sch.I I | |||||||||||||
T=0.3 | (30, 20, 15) | 0.470 | 0.722 | 0.546 | 0.742 | 0.078 | 0.927 | 0.093 | 0.975 | 0.466 | 0.936 | 0.562 | 0.949 |
(40, 20, 15) | 0.485 | 0.733 | 0.527 | 0.773 | 0.078 | 0.967 | 0.092 | 0.989 | 0.494 | 0.924 | 0.547 | 0.955 | |
(60, 30, 20) | 0.333 | 0.792 | 0.398 | 0.828 | 0.077 | 1.035 | 0.091 | 1.000 | 0.329 | 0.937 | 0.401 | 0.945 | |
T=0.7 | (30, 20, 15) | 0.310 | 0.773 | 0.375 | 0.773 | 0.074 | 0.967 | 0.088 | 1.000 | 0.299 | 0.925 | 0.369 | 0.955 |
(40, 20, 15) | 0.429 | 0.710 | 0.438 | 0.773 | 0.074 | 0.967 | 0.087 | 0.959 | 0.434 | 0.935 | 0.440 | 0.949 | |
(60, 30, 20) | 0.253 | 0.798 | 0.308 | 0.806 | 0.073 | 1.007 | 0.086 | 1.000 | 0.247 | 0.926 | 0.300 | 0.940 | |
T=1.5 | (30, 20, 15) | 0.315 | 0.744 | 0.357 | 0.765 | 0.072 | 0.956 | 0.085 | 1.000 | 0.314 | 0.925 | 0.350 | 0.935 |
(40, 20, 15) | 0.387 | 0.715 | 0.455 | 0.753 | 0.073 | 0.941 | 0.086 | 0.965 | 0.380 | 0.926 | 0.461 | 0.961 | |
(60, 30, 20) | 0.248 | 0.805 | 0.290 | 0.852 | 0.071 | 1.000 | 0.084 | 1.000 | 0.239 | 0.925 | 0.285 | 0.941 | |
Sch. III | |||||||||||||
T=0.3 | (30, 20, 15) | 0.417 | 0.761 | 0.546 | 0.742 | 0.078 | 0.927 | 0.093 | 1.000 | 0.420 | 0.935 | 0.562 | 0.949 |
(40, 20, 15) | 0.663 | 0.649 | 0.779 | 0.704 | 0.078 | 0.880 | 0.093 | 0.877 | 0.771 | 0.906 | 0.944 | 0.933 | |
(60, 30, 20) | 0.348 | 0.756 | 0.412 | 0.779 | 0.077 | 0.973 | 0.091 | 1.000 | 0.349 | 0.917 | 0.427 | 0.948 | |
T=0.7 | (30, 20, 15) | 0.362 | 0.745 | 0.429 | 0.786 | 0.074 | 0.983 | 0.088 | 1.000 | 0.358 | 0.930 | 0.437 | 0.962 |
(40, 20, 15) | 0.607 | 0.666 | 0.665 | 0.731 | 0.075 | 0.914 | 0.089 | 0.898 | 0.695 | 0.912 | 0.758 | 0.946 | |
(60, 30, 20) | 0.332 | 0.781 | 0.394 | 0.800 | 0.074 | 1.000 | 0.087 | 1.000 | 0.338 | 0.923 | 0.405 | 0.952 | |
T=1.5 | (30, 20, 15) | 0.338 | 0.766 | 0.429 | 0.769 | 0.073 | 0.961 | 0.086 | 1.000 | 0.335 | 0.962 | 0.443 | 0.953 |
(40, 20, 15) | 0.621 | 0.666 | 0.689 | 0.720 | 0.073 | 0.900 | 0.087 | 0.898 | 0.686 | 0.903 | 0.796 | 0.936 | |
(60, 30, 20) | 0.331 | 0.765 | 0.394 | 0.774 | 0.072 | 0.968 | 0.086 | 1.000 | 0.333 | 0.923 | 0.408 | 0.950 |