Let us consider continuous minimizers $ u : \bar \Omega \subset \mathbb{R}^n \to \mathbb{R}^n $ of
$ \mathcal{F}(v) = \int_{\Omega} [|Dv|^p \, + \, |{\rm det}\,Dv|^r] dx, $
with $ p > 1 $ and $ r > 0 $; then it is known that every component $ u^\alpha $ of $ u = (u^1, ..., u^n) $ enjoys maximum principle: the set of interior points $ x $, for which the value $ u^\alpha(x) $ is greater than the supremum on the boundary, has null measure, that is, $ \mathcal{L}^n(\{ x \in \Omega: u^\alpha (x) > \sup_{\partial \Omega} u^\alpha \}) = 0 $. If we change the structure of the functional, it might happen that the maximum principle fails, as in the case
$ \mathcal{F}(v) = \int_{\Omega}[\max\{(|Dv|^p - 1); 0 \} \, + \, |{\rm det}\,Dv|^r] dx, $
with $ p > 1 $ and $ r > 0 $. Indeed, for a suitable boundary value, the set of the interior points $ x $, for which the value $ u^\alpha(x) $ is greater than the supremum on the boundary, has a positive measure, that is $ \mathcal{L}^n(\{ x \in \Omega: u^\alpha (x) > \sup_{\partial \Omega} u^\alpha \}) > 0 $. In this paper we show that the measure of the image of these bad points is zero, that is $ \mathcal{L}^n(u(\{ x \in \Omega: u^\alpha (x) > \sup_{\partial \Omega} u^\alpha \})) = 0 $, provided $ p > n $. This is a particular case of a more general theorem.
Citation: Menita Carozza, Luca Esposito, Raffaella Giova, Francesco Leonetti. Polyconvex functionals and maximum principle[J]. Mathematics in Engineering, 2023, 5(4): 1-10. doi: 10.3934/mine.2023077
Let us consider continuous minimizers $ u : \bar \Omega \subset \mathbb{R}^n \to \mathbb{R}^n $ of
$ \mathcal{F}(v) = \int_{\Omega} [|Dv|^p \, + \, |{\rm det}\,Dv|^r] dx, $
with $ p > 1 $ and $ r > 0 $; then it is known that every component $ u^\alpha $ of $ u = (u^1, ..., u^n) $ enjoys maximum principle: the set of interior points $ x $, for which the value $ u^\alpha(x) $ is greater than the supremum on the boundary, has null measure, that is, $ \mathcal{L}^n(\{ x \in \Omega: u^\alpha (x) > \sup_{\partial \Omega} u^\alpha \}) = 0 $. If we change the structure of the functional, it might happen that the maximum principle fails, as in the case
$ \mathcal{F}(v) = \int_{\Omega}[\max\{(|Dv|^p - 1); 0 \} \, + \, |{\rm det}\,Dv|^r] dx, $
with $ p > 1 $ and $ r > 0 $. Indeed, for a suitable boundary value, the set of the interior points $ x $, for which the value $ u^\alpha(x) $ is greater than the supremum on the boundary, has a positive measure, that is $ \mathcal{L}^n(\{ x \in \Omega: u^\alpha (x) > \sup_{\partial \Omega} u^\alpha \}) > 0 $. In this paper we show that the measure of the image of these bad points is zero, that is $ \mathcal{L}^n(u(\{ x \in \Omega: u^\alpha (x) > \sup_{\partial \Omega} u^\alpha \})) = 0 $, provided $ p > n $. This is a particular case of a more general theorem.
[1] | J. M. Ball, Convexity conditions and existence theorems in nonlinear elasticity, Arch. Rational Mech. Anal., 63 (1976), 337–403. https://doi.org/10.1007/BF00279992 doi: 10.1007/BF00279992 |
[2] | J. M. Ball, F. Murat, $W^{1, p}$ quasiconvexity and variational problems for multiple integrals, J. Funct. Anal., 58 (1984), 225–253. https://doi.org/10.1016/0022-1236(84)90041-7 doi: 10.1016/0022-1236(84)90041-7 |
[3] | P. Baroni, M. Colombo, G. Mingione, Harnack inequalities for double phase functionals, Nonlinear Anal., 121 (2015), 206–222. https://doi.org/10.1016/j.na.2014.11.001 doi: 10.1016/j.na.2014.11.001 |
[4] | P. Bauman, N. Owen, D. Phillips, Maximum principles and a priori estimates for a class of problems from nonlinear elasticity, Ann. Inst. H. Poincaré Anal. Non Linéaire, 8 (1991), 119–157. https://doi.org/10.1016/S0294-1449(16)30269-4 doi: 10.1016/S0294-1449(16)30269-4 |
[5] | P. Bauman, N. C. Owen, D. Phillips, Maximum principles and a priori estimates for an incompressible material in nonlinear elasticity, Commun. Part. Diff. Eq., 17 (1992), 1185–1212. https://doi.org/10.1080/03605309208820882 doi: 10.1080/03605309208820882 |
[6] | L. Beck, G. Mingione, Lipschitz bounds and nonuniform ellipticity, Commun. Pure Appl. Math., 73 (2020), 944–1034. https://doi.org/10.1002/cpa.21880 doi: 10.1002/cpa.21880 |
[7] | J. J. Bevan, A condition for the Hölder regularity of local minimizers of a nonlinear elastic energy in two dimensions, Arch. Rational Mech. Anal., 225 (2017), 249–285. https://doi.org/10.1007/s00205-017-1104-5 doi: 10.1007/s00205-017-1104-5 |
[8] | M. Carozza, H. Gao, R. Giova, F. Leonetti, A boundedness result for minimizers of some polyconvex integrals, J. Optim. Theory Appl., 178 (2018), 699–725. https://doi.org/10.1007/s10957-018-1335-0 doi: 10.1007/s10957-018-1335-0 |
[9] | M. Carozza, A. Passarelli di Napoli, Model problems from nonlinear elasticity: partial regularity results, ESAIM: COCV, 13 (2007), 120–134. https://doi.org/10.1051/cocv:2007007 doi: 10.1051/cocv:2007007 |
[10] | M. Carozza, J. Kristensen, A. Passarelli di Napoli, Regularity of minimizers of autonomous convex variational integrals, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 13 (2014), 1065–1089. https://doi.org/10.2422/2036-2145.201208_005 doi: 10.2422/2036-2145.201208_005 |
[11] | M. Carozza, J. Kristensen, A. Passarelli di Napoli, Higher differentiability of minimizers of convex variational integrals, Ann. Inst. H. Poincaré Anal. Non Linéaire, 28 (2011), 395–411. https://doi.org/10.1016/j.anihpc.2011.02.005 doi: 10.1016/j.anihpc.2011.02.005 |
[12] | A. Cianchi, Local boundedness of mininimizers of anisotropic functionals, Ann. Inst. H. Poincaré Anal. Non Linéaire, 17 (2000), 147–168. https://doi.org/10.1016/S0294-1449(99)00107-9 doi: 10.1016/S0294-1449(99)00107-9 |
[13] | M. Colombo, G. Mingione, Regularity for double phase variational problems, Arch. Rational Mech. Anal., 215 (2015), 443–496. https://doi.org/10.1007/s00205-014-0785-2 doi: 10.1007/s00205-014-0785-2 |
[14] | G. Cupini, F. Leonetti, E. Mascolo, Local boundedness for minimizers of some polyconvex integrals, Arch. Rational Mech. Anal., 224 (2017), 269–289. https://doi.org/10.1007/s00205-017-1074-7 doi: 10.1007/s00205-017-1074-7 |
[15] | G. Cupini, M. Focardi, F. Leonetti, E. Mascolo, Local boundedness of vectorial minimizers of non-convex functionals, Bruno Pini Math. Anal., 9 (2018), 20–40. https://doi.org/10.6092/issn.2240-2829/8942 doi: 10.6092/issn.2240-2829/8942 |
[16] | G. Cupini, M. Focardi, F. Leonetti, E. Mascolo, On the Hölder continuity for a class of vectorial problems, Adv. Nonlinear Anal., 9 (2020), 1008–1025. https://doi.org/10.1515/anona-2020-0039 doi: 10.1515/anona-2020-0039 |
[17] | B. Dacorogna, Direct methods in the calculus of variations, New York: Springer, 2008. https://doi.org/10.1007/978-0-387-55249-1 |
[18] | C. De Filippis, G. Mingione, On the regularity of minima of non-autonomous functionals, J. Geom. Anal., 30 (2020), 1584–1626. https://doi.org/10.1007/s12220-019-00225-z doi: 10.1007/s12220-019-00225-z |
[19] | M. M. Dougherty, Higher gradient integrability of minimizers for a polyconvex case in two dimensions, SIAM J. Math. Anal., 28 (1997), 530–538. https://doi.org/10.1137/S0036141095292585 doi: 10.1137/S0036141095292585 |
[20] | M. M. Dougherty, D. Phillips, Higher gradient integrability of equilibria for certain rank-one convex integrals, SIAM J. Math. Anal., 28 (1997), 270–273. https://doi.org/10.1137/S0036141095293384 doi: 10.1137/S0036141095293384 |
[21] | A. D'Ottavio, F. Leonetti, C. Musciano, Maximum principle for vector valued mappings minimizing variational integrals, Atti Sem. Math. Univ. Modena, 46 (1998), 677–683. |
[22] | L. Esposito, F. Leonetti, G. Mingione, Sharp regularity for functionals with (p, q) growth, J. Differ. Equations, 204 (2004), 5–55. https://doi.org/10.1016/J.JDE.2003.11.007 doi: 10.1016/J.JDE.2003.11.007 |
[23] | L. Esposito, G. Mingione, Partial regularity for minimizers of degenerate polyconvex energies, J. Convex Anal., 8 (2001), 1–38. |
[24] | M. Focardi, N. Fusco, C. Leone, P. Marcellini, E. Mascolo, A. Verde, Weak lower semicontinuity for polyconvex integrals in the limit case, Calc. Var., 51 (2014), 171–193. https://doi.org/10.1007/s00526-013-0670-0 doi: 10.1007/s00526-013-0670-0 |
[25] | I. Fonseca, J. Maly, G. Mingione, Scalar minimizers with fractal singular sets, Arch. Rational Mech. Anal., 172 (2004), 295–307. https://doi.org/10.1007/s00205-003-0301-6 doi: 10.1007/s00205-003-0301-6 |
[26] | M. Foss, A condition sufficient for the partial regularity of minimizers in two-dimensional nonlinear elasticity, In: The p-harmonic equation and recent advances in analysis, Providence, RI: Amer. Math. Soc., 2005, 51–98. https://doi.org/10.1090/conm/370/06829 |
[27] | M. Fuchs, J. Reuling, Partial regularity for certain classes of polyconvex functionals related to nonlinear elasticity, Manuscripta Math., 87 (1995), 13–26. https://doi.org/10.1007/BF02570458 doi: 10.1007/BF02570458 |
[28] | M. Fuchs, G. Seregin, Partial regularity of the deformation gradient for some model problems in nonlinear twodimensional elasticity, Algebra Anal., 6 (1994), 128–153. |
[29] | M. Fuchs, G. Seregin, Hölder continuity for weak estremals of two-dimensional variational problems related to nonlinear elasticity, Adv. Math. Sci. Appl., 7 (1997), 413–425. |
[30] | N. Fusco, J. Hutchinson, Partial regularity in problems motivated by nonlinear elasticity, SIAM J. Math. Anal., 22 (1991), 1516–1551. https://doi.org/10.1137/0522098 doi: 10.1137/0522098 |
[31] | N. Fusco, J. Hutchinson, Partial regularity and everywhere continuity for a model problem from nonlinear elasticity, J. Aust. Math. Soc., 57 (1994), 158–169. https://doi.org/10.1017/S1446788700037496 doi: 10.1017/S1446788700037496 |
[32] | N. Fusco, C. Sbordone, Higher integrability of the gradient of minimizers of functionals with nonstandard growth conditions, Commun. Pure Appl. Math., 43 (1990), 673–683. https://doi.org/10.1002/CPA.3160430505 doi: 10.1002/CPA.3160430505 |
[33] | M. Giaquinta, Growth conditions and regularity, a counterexample, Manuscripta Math., 59 (1987), 245–248. https://doi.org/10.1007/BF01158049 doi: 10.1007/BF01158049 |
[34] | M. Giaquinta, G. Modica, J. Soucek, Area and the area formula, Seminario Mat. e. Fis. di Milano, 62 (1992), 53–87. https://doi.org/10.1007/BF02925436 |
[35] | M. Giaquinta, G. Modica, J. Soucek, Cartesian currents in the calculus of variations I. Cartesian Currents, Berlin, Heidelberg: Springer, 1998. |
[36] | C. Hamburger, Partial regularity of minimizers of polyconvex variational integrals, Calc. Var., 18 (2003), 221–241. https://doi.org/10.1007/s00526-003-0189-x doi: 10.1007/s00526-003-0189-x |
[37] | D. Henao, C. Mora-Corral, Invertibility and weak continuity of the determinant for the modelling of cavitation and fracture in nonlinear elasticity, Arch. Rational Mech. Anal., 197 (2010), 619–655. https://doi.org/10.1007/s00205-009-0271-4 doi: 10.1007/s00205-009-0271-4 |
[38] | M. C. Hong, Some remarks on the minimizers of variational integrals with nonstandard growth conditions, Boll. Un. Mat. Ital., 6 (1992), 91–101. |
[39] | F. Leonetti, Maximum principle for vector-valued minimizers of some integral functionals, Boll. Un. Mat. Ital., 5 (1991), 51–56. |
[40] | F. Leonetti, Pointwise estimates for a model problem in nonlinear elasticity, Forum Math., 18 (2006), 529–534. https://doi.org/10.1515/FORUM.2006.027 doi: 10.1515/FORUM.2006.027 |
[41] | F. Leonetti, P. V. Petricca, Regularity for vector valued minimizers of some anisotropic integral functionals, J. Inequal. Pure Appl. Math., 7 (2006), 88. |
[42] | F. Leonetti, P. V. Petricca, Bounds for some minimizing sequences of functionals, Adv. Calc. Var., 4 (2010), 83–100. https://doi.org/10.1515/acv.2010.018 doi: 10.1515/acv.2010.018 |
[43] | F. Leonetti, F. Siepe, Maximum principle for vector valued minimizers, J. Convex Anal., 12 (2005), 267–278. |
[44] | F. Leonetti, F. Siepe, Bounds for vector valued minimizers of some integral functionals, Ric. Mat., 54 (2005), 303–312. |
[45] | P. Marcellini, On the definition and the lower semicontinuity of certain quasiconvex integrals, Ann. Inst. H. Poincaré Anal. Non Linéaire, 3 (1986), 391–409. https://doi.org/10.1016/S0294-1449(16)30379-1 doi: 10.1016/S0294-1449(16)30379-1 |
[46] | P. Marcellini, The stored-energy for some discontinuous deformations in nonlinear elasticity, In: Partial differential equations and the calculus of variations, Boston: Birkhäuser, 1989,767–786. https://doi.org/10.1007/978-1-4615-9831-2_11 |
[47] | P. Marcellini, Regularity of minimizers of integrals of the calculus of variations with nonstandard growth conditions, Arch. Rational Mech. Anal., 105 (1989), 267–284. https://doi.org/10.1007/BF00251503 doi: 10.1007/BF00251503 |
[48] | P. Marcellini, Regularity and existence of solutions of elliptic equations with p, q-growth conditions, J. Differ. Equations, 90 (1991), 1–30. https://doi.org/10.1016/0022-0396(91)90158-6 doi: 10.1016/0022-0396(91)90158-6 |
[49] | G. Mingione, Regularity of minima: an invitation to the dark side of the calculus of variations, Appl. Math., 51 (2006), 355–426. https://doi.org/10.1007/s10778-006-0110-3 doi: 10.1007/s10778-006-0110-3 |
[50] | G. Moscariello, L. Nania, Hölder continuity of minimizers of functionals with nonstandard growth conditions, Ric. Mat., 40 (1991), 259–273. |
[51] | S. Müller, S. J. Spector, An existence theory for nonlinear elasticity that allows for cavitation, Arch. Rational Mech. Anal., 131 (1995), 1–66. https://doi.org/10.1007/BF00386070 doi: 10.1007/BF00386070 |
[52] | A. Passarelli di Napoli, A regularity result for a class of polyconvex functionals, Ric. Mat., 48 (1999), 379–393. |