In this paper, we consider two overdetermined problems for the anisotropic $ p $-Laplacian ($ 1 < p\leq n $) in the exterior domains and the bounded punctured domains, respectively, and prove the corresponding Wulff shape characterizations, by using Weinberger type approach.
Citation: Chao Xia, Jiabin Yin. Two overdetermined problems for anisotropic $ p $-Laplacian[J]. Mathematics in Engineering, 2022, 4(2): 1-18. doi: 10.3934/mine.2022015
In this paper, we consider two overdetermined problems for the anisotropic $ p $-Laplacian ($ 1 < p\leq n $) in the exterior domains and the bounded punctured domains, respectively, and prove the corresponding Wulff shape characterizations, by using Weinberger type approach.
[1] | G. Alessandrini, E. Rosset, Symmetry of singular solutions of degenerate quasilinear elliptic equations, Rend Istit Mat Univ Trieste, 39 (2007), 1–8. |
[2] | A. D. Alexandrov, Uniqueness theorem for surfaces in the large, Vesti Leningrad State University, 19 (1956), 25–40. |
[3] | A. D. Alexandrov. A characteristic property of spheres, Ann. Math. Pura Appl., 58 (1962), 303–315. |
[4] | C. Bianchini, G. Ciraolo. Wulff shape characterizations in overdetermined anisotropic elliptic problems, Commun. Part. Diff. Eq., 43 (2018), 790–820. doi: 10.1080/03605302.2018.1475488 |
[5] | C. Bianchini, G. Ciraolo, P. Salani, An overdetermined problem for the anisotropic capacity, Calc. Var., 55 (2016), 84. doi: 10.1007/s00526-016-1011-x |
[6] | A. Cianchi, P. Salani, Overdetermined anisotropic elliptic problems, Math. Ann., 345 (2009), 859–881. doi: 10.1007/s00208-009-0386-9 |
[7] | F. D. Pietra, N. Gavitone, C. Xia, Motion of level sets by inverse anisotropic mean curvature, Commun. Anal. Geom., to appear. |
[8] | F. D. Pietra, N. Gavitone, C. Xia, Symmetrization with respect to mixed volumes, Adv. Math., to appear. |
[9] | A. Enciso, D. Peralta-Salas, Symmetry for an overdetermined boundary problem in a punctured domain, Nonlinear Anal.-Theor., 70 (2009), 1080–1086. doi: 10.1016/j.na.2008.01.034 |
[10] | N. Garofalo, E. Sartori, Symmetry in exterior boundary value problems for quasilinear elliptic equations via blow-up and a-priori estimates, Adv. Differential Equations, 4 (1999), 137–161. |
[11] | D. Gilbarg, N. S. Trudinger, Elliptic partial differential equations of second order, Berlin: Springer-Verlag, 2001. |
[12] | Y. J. He, H. Z. Li, H. Ma, J. Q. Ge, Compact embedded hypersurfaces with constant higher order anisotropic mean curvatures, Indiana U. Math. J., 58 (2009), 853–868. doi: 10.1512/iumj.2009.58.3515 |
[13] | S. Kichenassamy, L. Véron, Singular solutions of the $p$-Laplace equation, Math. Ann., 275 (1986), 599–615. doi: 10.1007/BF01459140 |
[14] | G. Poggesi, Radial symmetry for $p$-harmonic functions in exterior and punctured domains, Appl. Anal., 98 (2019), 1785–1798. doi: 10.1080/00036811.2018.1460819 |
[15] | F. Maggi, Sets of finite perimeter and geometric variational problems: an introduction to geometric measure theory, Cambridge University Press, 2012. |
[16] | L. E. Payne, G. A. Philippin, On some maximum principles involving harmonic functions and their derivatives, SIAM J. Math. Anal., 10 (1979), 96–104. doi: 10.1137/0510012 |
[17] | W. Reichel, Radial symmetry for elliptic boundary-value problems on exterior domains, Arch. Rational Mech. Anal., 137 (1997), 381–394. doi: 10.1007/s002050050034 |
[18] | W. Reichel. Radial symmetry for an electrostatic, a capillarity and some fully nonlinear overdetermined problems on exterior domains, Z. Anal. Anwend., 15 (1996), 619–635. doi: 10.4171/ZAA/719 |
[19] | J. Serrin, Isolated singularities of solutions of quasi-linear equations, Acta Math., 113 (1965), 219–240. doi: 10.1007/BF02391778 |
[20] | J. Serrin, A symmetry problem in potential theory, Arch. Rational Mech. Anal., 43 (1971), 304–318. doi: 10.1007/BF00250468 |
[21] | P. Tolksdorf, Regularity for a more general class of quasilinear elliptic equations, J. Differ. Equations, 51 (1984), 126–150. doi: 10.1016/0022-0396(84)90105-0 |
[22] | G. F. Wang, C. Xia, A characterization of the Wulff shape by an overdetermined anisotropic PDE, Arch. Rational Mech. Anal., 199 (2011), 99–115. doi: 10.1007/s00205-010-0323-9 |
[23] | G. F. Wang, C. Xia, Blow-up analysis of a Finsler-Liouville equation in two dimensions, J. Differ. Equations, 252 (2012), 1668–1700. doi: 10.1016/j.jde.2011.08.001 |
[24] | G. F. Wang, C. Xia, An optimal anisotropic Poincaré inequality for convex domains, Pac. J. Math., 258 (2012), 305–325. doi: 10.2140/pjm.2012.258.305 |
[25] | H. F. Weinberger, Remark on the preceding paper of Serrin, Arch. Rational Mech. Anal., 43 (1971), 319–320. doi: 10.1007/BF00250469 |
[26] | C. Xia, Inverse anisotropic mean curvature flow and a Minkowski type inequality, Adv. Math., 315 (2017), 102–129. doi: 10.1016/j.aim.2017.05.020 |
[27] | C. Xia, J. B. Yin, Anisotropic p-capacity and anisotropic Minkowski inequality, Sci. China Math., to appear. |
[28] | C. Xia, X. W. Zhang, ABP estimate and geometric inequalities, Commun. Anal. Geom., 25 (2017), 685–708. doi: 10.4310/CAG.2017.v25.n3.a6 |