[1]
|
Tong S, Davis J, Eichenberger E, et al. (2015) Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clin Microbiol Rev 28: 603–661. doi: 10.1128/CMR.00134-14
|
[2]
|
Kadariya J, Smith T, Thapaliya D (2014) Staphylococcus aureus and staphylococcal food-borne disease: an ongoing challenge in public health. BioMed Res Int 2014: 1–9.
|
[3]
|
Hennekinne J, Buyder M, Dragacci S (2012) Staphylococcus aureus and its food poisoning toxins: characterization and outbreak investigation. FEMS Microbial Rev 36: 815–836. doi: 10.1111/j.1574-6976.2011.00311.x
|
[4]
|
Altamirano F, Barr J (2019) Phage therapy in the postantibiotic era. Clin Microbiol Rev 32: e00066–18.
|
[5]
|
Furfaro L, Payne M, Chang B (2018) Bacteriophage therapy: clinical trials and regulatory hurdles. Front Cell Infect Microbiol 8: 1–7. doi: 10.3389/fcimb.2018.00001
|
[6]
|
Lin D, Koskella B, Lin H (2017) Phage therapy: an alternative to antibiotics in the age of multi-drug resistance. World J Gastrointest Pharmacol Ther 8: 162–173. doi: 10.4292/wjgpt.v8.i3.162
|
[7]
|
Liu J, Wang N, Liu Y, et al. (2018) The antimicrobial spectrum of lysozyme broadened by reductive modifications. Poult Sci 97: 3992–3999. doi: 10.3382/ps/pey245
|
[8]
|
Massschalck B, Michiels C (2003) Antimicrobial properties of lysozyme in relation to foodborne vegetative bacteria. Crit Rev Microbiol 29: 191–214. doi: 10.1080/713610448
|
[9]
|
Jagielska E, Chojnacka O, Sabała I (2016) LytM fusion with SH3b-like domain expands its activity to physiological conditions. Microb Drug Resist 22: 561–469.
|
[10]
|
Tossavainen H, Raulinaitis V, Kauppinen L, et al. (2018) Structural and functional insights into Lysostaphin-substrate interaction. Front Mol Biosci 5: 1–14. doi: 10.3389/fmolb.2018.00001
|
[11]
|
Channabasappa S, Durgaiah M, Chikkamadaiah R, et al. (2018) Efficacy of novel antistaphylococcal ectolysin P128 in a rat model of methicillin-resistant Staphylococcus aureus bacteremia. Antimicrob Agents and Chemother 62: 1–10.
|
[12]
|
Cooper C, Mirzael M, Nilsson A (2016) Adapting drug approval pathways for bacteriophage-based therapeutics. Front Microbiol 7: 1–15.
|
[13]
|
Kashani H, Schmelcher M, Sabzalipoor H, et al. (2018) Recombinant endolysins as potential therapeutics against antibiotic-resistant Staphylococcus aureus: current status of research and novel delivery strategies. Clin Microbiol Rev 31: e00071–17.
|
[14]
|
Love M, Bhandari D, Dobson R, et al. (2018) Potential for bacteriophage endolysins to supplement or replace antibiotics in food production and clinical care. Antibiotics 7: 1–25.
|
[15]
|
Desbois A, Coote P (2011) Bacteriocidal synergy of Lysostaphin in combination with antimicrobial peptides. Eur J Clin Microbiol Infect Dis 30: 1015–1021. doi: 10.1007/s10096-011-1188-z
|
[16]
|
Graham S, Coote P (2007) Potent, synergistic inhibition of Staphylococcus aureus upon exposure to a combination of the endopeptidase Lysostaphin and the cationic peptide ranalexin. J Antimicrob Chemother 59: 759–762. doi: 10.1093/jac/dkl539
|
[17]
|
Hjelm L, Nilvebrant J, Nygren P, et al. (2019) Lysis staphylococcal cells by modular lysin domains linked via a non-covalent barnase-barstar interaction bridge. Front Microbiol 10: 1–9. doi: 10.3389/fmicb.2019.00001
|
[18]
|
Nair S, Desai S, Poonacha N, et al. (2016) Antibiofilm activity and synergistic inhibition of S. aureus biofilms by bactericidal protein P128 in combination with antibiotics. Antimicrob Agents Chemother 60: 7280–7289.
|
[19]
|
Schmelcher M, Donovan D, Loessner M (2012) Bacteriophage endolysins as novel antimicrobials. Future Microbiol 7: 1147–1171. doi: 10.2217/fmb.12.97
|
[20]
|
Roach D, Donovan D (2015) Antimicrobial bacteriophage-derived proteins and therapeutic applications. Bacteriophage 5: e1062590. doi: 10.1080/21597081.2015.1062590
|
[21]
|
Vázquez R, García E, García P (2018) Phage lysins for fighting bacterial respiratory infections: a new generation of antimicrobials. Front Immunol 9: 1–12. doi: 10.3389/fimmu.2018.00001
|
[22]
|
Briers Y, Walmagh M, Grymonprez B, et al. (2014) Art-175 is a highly efficient antibacterial against multidrug-resistant strains and persisters of Pseudomonas aeruginosa. Antimicrob Agents Chemother 58: 3774–3784. doi: 10.1128/AAC.02668-14
|
[23]
|
Larpin Y, Oechslin F, Moreillon P. et al. (2018) In vitro characterization of PlyE146, a novel hage lysin that targets Gram-negative bacteria. PLoS ONE 13: e0192507. doi: 10.1371/journal.pone.0192507
|
[24]
|
Matamp N, Bhat S (2019) Phage endolysins as potential antimicrobials against multidrug resistant Vibrio alginolyticus and Vibrio parahaemolyticus: current status of research and challenges ahead. Microorganisms 7: 1–11.
|
[25]
|
Gerstmans H, Rodríguez-Rubio L, Lavigne R, et al. (2016) From endolysins to Artilysin®s: novel enzyme-based approaches to kill drug-resistant bacteria. Biochem Soc Trans 44: 123–128. doi: 10.1042/BST20150192
|
[26]
|
Pastagia M, Euler C, Chahales P, et al. (2011) A novel chimeric lysin shows superiority to mupirocin for skin decolonization of methicillin-resistant and -sensitive staphylococcus aureus strains. Antimicrob Agents Chemother 55, 738–744.
|
[27]
|
Rodríguez-Rubio L, Martínez B, Rodríguez A, et al. (2013) The phage lytic proteins from the Staphylococcus aureus bacteriophage vB_SauS-phiIPLA88 display multiple active catalytic domains and do not trigger staphylococcal resistance. PLoS One 8: e64671. doi: 10.1371/journal.pone.0064671
|
[28]
|
Becker S, Roach D, Chauhan V, et al. (2016) Triple-acting lytic enzyme treatment of drug-resistant and intracellular Staphylococcus aureus. Sci Rep 6: 1–10. doi: 10.1038/s41598-016-0001-8
|
[29]
|
Donovan D, Foster-Frey J (2008) LambdaSa2 prophage endolysin requires Cpl-7-binding domains and amidase-5domain for antimicrobial lysis of streptococci. FEMS Microbiol Lett 287: 22–33. doi: 10.1111/j.1574-6968.2008.01287.x
|
[30]
|
Abaev I, Foster-Frey J, Korobova O, et al. (2013) Staphylococcal Phage 2638A endolysin is lytic for Staphylococcus aureus and harbors an inter-lytic-domain secondary translational start site. Appl Microbiol Biotechnol 97: 3449–3456. doi: 10.1007/s00253-012-4252-4
|
[31]
|
Yang X, Li C, Lou R, et al. (2007) In vitro activity of recombinant lysostaphin against Staphylococcus aureus isolates from hospitals in Beijing. China J Med Microbiol 56: 71–76. doi: 10.1099/jmm.0.46788-0
|
[32]
|
Pritchard D, Dong S, Kirk M, et al. (2007) LambdaSa1 and LambdaSa2 prophage lysins of Streptococcus agalactiae. Appl Environ Microbiol 73: 7150–7154. doi: 10.1128/AEM.01783-07
|
[33]
|
Lim H-S, Vaira A, Domier L, et al. (2010) Efficiency of VIGS and gene expression in a novel bipartite potexvirus vector delivery system as a function of strength of TGB1 silencing suppression. Virology 402: 149–163. doi: 10.1016/j.virol.2010.03.022
|
[34]
|
Peyret H, Lomonossoff G (2013) The pEAQ vector series: the easy and quick way to produce recombinant proteins in plants. Plant Mol Biol 83: 51–58. doi: 10.1007/s11103-013-0036-1
|
[35]
|
Kovalskaya N, Zhao Y, Hammond R (2011) Antibacterial and antifungal activity of a snakin-defensin hybrid protein expressed in tobacco and potato plants. The Open Plant Sci J 5: 29–42. doi: 10.2174/1874294701105010029
|
[36]
|
Kovalskaya N, Hammond RW (2009) Expression and functional characterization of the plant antimicrobial snakin-1 and defensin recombinant proteins. Protein Expr Purif 63: 12–17. doi: 10.1016/j.pep.2008.08.013
|
[37]
|
Sainsbury F, Thuenemann E, Lomonossoff G. (2009) pEAQ: versatile expression vectors for easy and quick transient expression of heterologous proteins in plants. Plant Biotechnol J 7: 682–693. doi: 10.1111/j.1467-7652.2009.00434.x
|
[38]
|
Scholthof H, Scholthof K-B, Jackson A (1996) Plant virus gene vectors for transient expression of foreign proteins in plants. Annu Rev Phytopathol 34: 299–323. doi: 10.1146/annurev.phyto.34.1.299
|
[39]
|
Al-Hawash A, Zhang X, Ma F (2017) Strategies of codon optimization for high-level heterologous protein expression in microbial expression systems. Gene Reports 9: 46–53. doi: 10.1016/j.genrep.2017.08.006
|
[40]
|
Inouye S, Sahara-Miura Y, Sato J, et al. (2015) Codon optimization of genes for efficient protein expression in mammalian cells by selection of only preferred human codons. Protein Expr Purif 109: 47–54. doi: 10.1016/j.pep.2015.02.002
|
[41]
|
Khalili M, Soleyman M, Baazm M, et al. (2015) High-level expression and purification of soluble bioactive recombinant human heparin-binding epidermal growth factor in Escherichia coli. Cell Biol Int 39: 858–864. doi: 10.1002/cbin.10454
|
[42]
|
Woo J, Liu Y, Mathias A, et al. (2002) Gene optimization is necessary to express a bivalent anti-human anti-T cell immunotoxin in Pichia pastoris. Protein Expr Purif 25: 270–282.
|
[43]
|
Kuta D, Tripathi L (2005) Agrobacterium-induced hypersensitive necrotic reaction in plant cells: a resistance response against Agrobacterium-mediated DNA transfer. Afr J Biotechnol 4: 752–757.
|
[44]
|
Chen Q, Lai H, Hurtado J, et al. (2013) Agroinfiltration as an effective and scalable strategy of gene delivery for production of pharmaceutical proteins. Adv Tech Biol Med 1: 1–21.
|
[45]
|
Kovalskaya N, Foster-Frey J, Donovan D, et al. (2016) Antimicrobial activity of bacteriophages endolysin produced in Nicotiana benthamiana plants. J Microbiol Biotechnol 26: 160–170. doi: 10.4014/jmb.1505.05060
|
[46]
|
Grӓslund S, Nordlund P, Weigelt J, et al. (2008) Protein production and purification. Nature Methods 5: 135–146. doi: 10.1038/nmeth.f.202
|
[47]
|
Vera A, González-Montalbán N, Aris A, et al. (2007) The conformational quality of insoluble recombinant proteins is enhanced at low growth temperatures. Biotechnol Bioeng 96: 1101–1106. doi: 10.1002/bit.21218
|
[48]
|
Desai P, Shrivastava N, Padh H (2010) Production of heterologous proteins in plants: strategies for optimal expression. Biotechnolo Adv 28: 427–435. doi: 10.1016/j.biotechadv.2010.01.005
|
[49]
|
Dirisala V, Nair R, Srirama K, et al. (2017) Recombinant pharmaceutical protein production in plants: unraveling the therapeutic potential of molecular pharming. Acta Physiol Plant 39: 1–9. doi: 10.1007/s11738-016-2300-x
|
[50]
|
Rosano G, Ceccarelli E (2014) Recombinant protein expression in Escherichia coli: advances and challenges. Front Microbiol 5: 1–17.
|