Citation: Kenji Itao, Fumiya Omata, Yoshitaka Nishikawa, Tetsuro Oda, Toshiharu Sasaki, Cherri Zhang, John Solomon Maninang, Takayuki Yamaguchi. Threshold phenomena with respect to the initiation of depopulation in a simple model of foot-and-mouth disease[J]. Mathematical Biosciences and Engineering, 2019, 16(5): 5931-5946. doi: 10.3934/mbe.2019297
[1] | W. O. Kermack and A. G. McKendrick, A contribution to the mathematical theory of epidemics, Proc. Royal Soc. Lond. A, 115 (1927), 700–721. |
[2] | R.M. Anderson and R.M May, Infectious diseases of humans: Dynamics and control, Oxford: Oxford University Press, 1992. |
[3] | M. C. White and X. Zhao, Threshold dynamics in a time-delayed epidemic model with dispersal, Math. Biosci., 218 (2009), 121–129. |
[4] | Y. Lou and X. Zhao, Threshold dynamics in a time-delayed periodic SIS epidemic model, Discrete Continuous Dyn. Syst. Ser. B, 12 (2009), 169–186. |
[5] | K. Nah, Y. Kim and J. M. Lee, The dilution effect of the domestic animal population on the transmission of p. vivax malaria, J. Theor. Biol., 266 (2010), 299–306. |
[6] | X. Zhou and J. Cui, Threshold dynamics for a cholera epidemic model with periodic transmission rate, Appl. Math. Model., 37 (2013), 3093–3101. |
[7] | Z. Bai, Threshold dynamics of a time-delayed SEIRS model with pulse vaccination, Math. Biosci., 269 (2015), 178–185. |
[8] | X. Hu, Y. Zhang and F. Sun, Threshold dynamics for a pertussis model with seasonality, Int. J. Nonlinear Sci., 17 (2014), 281–288. |
[9] | F. Zhang and X. Zhang, The threshold of a stochastic avian-human influenza epidemic model with psychological effect, Physica A, 492 (2018), 485–495. |
[10] | D. T. Haydon, M. E. J. Woolhouse and R. P. Kitching, An analysis of foot and mouth disease epidemics in the UK, IMA J. Math. App. Med. Biol., 14 (1997), 1–9. |
[11] | D. J. Paton, S. Gubbins and D. P. King, Understanding the transmission of foot-and-mouth disease virus at different scales, Curr. Opin. Virol., 28 (2018), 85–91. |
[12] | C. Bravo de Rueda, M. C. de Jong, P. L. Eblé, et al., Quantification of transmission of foot-and- mouth disease virus caused by an environment contaminated with secretions and excretions from infected calves, Vet. Res., 46 (2015), 43. |
[13] | J. Slingluff, F. Sampedro and T. J. Goldsmith, Risk assessment for the transmission of foot and mouth disease via movement of swine and cattle carcasses from fmd-infected premises to a disposal site, 2014. Available from: http://hdl.handle.net/11299/193839. |
[14] | Veterinary science team global animal health-international disease monitoring preliminary outbreak assessment, Vitt/1200 Update FMD in East Asia, 1–2. |
[15] | Foot and mouth disease, Japan, OIE: Follow-up report 2 : 28/04/2010, 2010. Available from: http://www.oie.int/wahis 2/public/wahid.php/Reviewreport/Review?reportid=9185. |
[16] | Foot and mouth disease, Korea (Rep. of), OIE: Follow-up report 1 : 30/11/2010, 2010. Available from: http://www.oie.int/wahis 2/public/wahid.php/Reviewreport/Review?reportid=10002. |
[17] | N. Muroga, Y. Hayama, T. Yamamoto, et al., The 2010 foot-and-mouth disease epidemic in Japan, J. Vet. Med. Sci., 74 (2012), 399–404. |
[18] | Malignant exotic animal disease control guidelines, Ministry of agriculture, forestry and fisheries [MAFF] livestock industry bureau director general administrative notification No. 50-Chiku-A-3843 1975 amended by No. 51-Chiku-A-2760 [in Japanese]. Tokyo, 31. |
[19] | Act on domestic animal infectious diseases control (law no. 166, 1951). Official gazettes of 31 May 1951, 31 March 1952, 1 August 1953, 15 August 1953, 27 August 1955, 24 March 1956, 6 June 1956, 15 September 1962, 5 June 1971, 31 December 1971, 7 May 1975, 5 July 1978, 18 May 1985, 19 December 1989, 11 April 1997 and 16 July 1999, Tokyo: Ministry of finance printing bureau, 2019. Available from: http://www.cas.go.jp/jp/seisaku/hourei/data/adaidc.pdf. |
[20] | Infection with foot and mouth disease virus, OIE, 2018. Available from: http://www.oie.int/fileadmin/Home/eng/Health standards/tahc/current/chapitre fmd.pdf. |
[21] | List of FMD free members: OIE-World Organisation for Animal Health, 2018. Available from: http://www.oie.int/en/animal-health-in-the-world/official-disease-status/fmd/list-of-fmd-free-members. |
[22] | M. J. Tildesley, N. J. Savill, D. J. Shaw, et al., Optimal reactive vaccination strategies for a foot- and-mouth outbreak in the UK, Nature, 440 (2006), 83–86. |
[23] | H. Yoon, S. H. Wee, M. A. Stevenson, et al., I. J. Hwang, C. K. Park and M. W. Stern, Simulation analyses to evaluate alternative control strategies for the 2002 foot-and-mouth disease outbreak in the Republic of Korea, Prev. Vet. Med., 74 (2006), 212–225. |
[24] | Y. Hayama, T. Yamamoto, S. Kobayashi, et al., Mathematical model of the 2010 foot-and-mouth disease epidemic in Japan and evaluation of control measures, Prev. Vet. Med., 112 (2013), 183–193. |
[25] | C. Dubé, M. A. Stevenson, M. G. Garner, et al., A comparison of predictions made by three simulation models of foot-and-mouth disease, N. Z. Vet. J., 55 (2007), 280–288. |
[26] | A. Bouma, A. R. Elbers, A. Dekker, et al., The foot-and-mouth disease epidemic in the Netherlands in 2001, Prev. Vet. Med., 57 (2003), 155–166. |
[27] | N. M. Ferguson, C. A. Donnelly and R. M. Anderson, Transmission intensity and impact of control policies on the foot and mouth epidemic in Great Britain, Nature, 413 (2001), 542–548. |
[28] | APHIS evaluation of the foot and mouth disease status of Japan, Animal and Plant Health Inspection Service Veterinary Services, 2011. |
[29] | H. Nishiura and R. Omori, An epidemiological analysis of the foot-and-mouth disease epidemic in Miyazaki, Japan, 2010, Transbound. Emerg. Dis., 57 (2010), 396–403. |
[30] | F. Mardones, A. Perez, J. Sanchez, et al., Parameterization of the duration of infection stages of serotype O foot-and-mouth disease virus: An analytical review and meta-analysis with application to simulation models, Vet. Res., 41 (2010), 45. |
[31] | S. Z. Huang, A new SEIR epidemic model with applications to the theory of eradication and control of diseases, and to the calculation of R0, Math. Biosci., 215 (2008), 84–104. |
[32] | S. Alexandersen, M. Quan, C. Murphy, et al., Studies of quantitative parameters of virus excretion and transmission in pigs and cattle experimentally infected with foot-and-mouth disease virus, J. Comp. Pathol., 129 (2003), 268–282. |
[33] | C. Stenfeldt, J. M. Pacheco, B. P. Brito, et al., Transmission of foot-and-mouth disease virus during the incubation period in pigs, Front. Vet. Sci., 3 (2016), 105. |