Research article

On an integral and consequent fractional integral operators via generalized convexity

  • Received: 28 May 2020 Accepted: 27 July 2020 Published: 25 September 2020
  • MSC : 26D10, 31A10, 26A33

  • Fractional calculus operators are very useful in basic sciences and engineering. In this paper we study an integral operator which is directly related with many known fractional integral operators. A new generalized convexity namely exponentially (α, h?m)-convexity is defined which has been applied to obtain the bounds of unified integral operators. A generalized Hadamard inequality is established for the generalized convex functions. The established theorems reproduce several known results.

    Citation: Wenfeng He, Ghulam Farid, Kahkashan Mahreen, Moquddsa Zahra, Nana Chen. On an integral and consequent fractional integral operators via generalized convexity[J]. AIMS Mathematics, 2020, 5(6): 7632-7648. doi: 10.3934/math.2020488

    Related Papers:

  • Fractional calculus operators are very useful in basic sciences and engineering. In this paper we study an integral operator which is directly related with many known fractional integral operators. A new generalized convexity namely exponentially (α, h?m)-convexity is defined which has been applied to obtain the bounds of unified integral operators. A generalized Hadamard inequality is established for the generalized convex functions. The established theorems reproduce several known results.


    加载中


    [1] G. Farid, A. U. Rehman, Q. U. Ain, k-fractional integral inequalities of Hadamard type for (h-m)- convex functions, Comput. Methods. Differ. Equ., 8 (2020), 119-140.
    [2] S. M. Kang, G. Farid, M. Waseem, et al. Generalized k-fractional integral inequalities associated with (α, m)-convex functions, J. Inequal. Appl., 2019 (2019), 1-14.
    [3] G. Farid, S. B. Akbar, S. U. Rehman, et al. Boundedness of fractional integral operators containing Mittag-Leffler functions via (s, m)-convexity, AIMS Math., 5 (2020), 966-978.
    [4] X. Qiang, G. Farid, J. Pečarić, et al. Generalized fractional integral inequalities for exponentially (s, m)-convex functions, J. Inequal. Appl., 2020 (2020), 1-13.
    [5] N. Mehreen, M. Anwar, Hermite-Hadamard type inequalities for exponentially p-convex functions and exponentially s-convex functions in the second sense with applications, J. Inequal. Appl., 2019 (2019), 92.
    [6] M. U. Awan, M. A. Noor, K. I. Noor, Hermite-Hadamard inequalities for exponentially convex functions, Appl. Math. Inf. Sci., 12 (2018), 405-409.
    [7] N. Efthekhari, Some remarks on (s, m)-convexity in the second sense, J. Math. Inequal., 8 (2014), 489-495.
    [8] H. Hudzik, L. Maligranda, Some remarks on s-convex functions, Aequ. Math., 48 (1994), 100-111.
    [9] G. H. Toader, Some generalizations of convexity, Proc. Colloq. Approx. Optim, Cluj-Napoca, (1984), 329-338.
    [10] G. Farid, A unified integral operator and its consequences, Open J. Math. Anal., 4 (2020), 1-7.
    [11] Y. C. Kwun, G. Farid, S. Ullah, et al. Inequalities for a unified integral operator and associated results in fractional calculus, IEEE Access, 7 (2019), 126283-126292.
    [12] A. A. Kilbas, H. M. Srivastava, J. J Trujillo, Theory and applications of fractional differential equations, North-Holland Mathematics Studies, Elsevier, New York-London, 2006.
    [13] S. Mubeen, G. M. Habibullah, k-fractional integrals and applications, Int. J. Contemp. Math., 7 (2012), 89-94.
    [14] S. Mubeen, A. Rehman, A note on k-Gamma function and Pochhammer k-symbol, J. Inf. Math. Sci., 6 (2014), 93-107.
    [15] Y. C. Kwun, G. Farid, W. Nazeer, et al. Generalized Riemann-Liouville k-fractional integrals associated with Ostrowski type inequalities and error bounds of Hadamard inequalities, IEEE Access, 6 (2018), 64946-64953.
    [16] M. Andrić, G. Farid, J. Pečarić, A further extension of Mittag-Leffler function, Fract. Calc. Appl. Anal., 21 (2018), 1377-1395.
    [17] H. Chen, U. N. Katugampola, Hermite-Hadamard and Hermite-Hadamard-Fejér type inequalities for generalized fractional integrals, J. Math. Anal. Appl., 446 (2017), 1274-1291.
    [18] S. S. Dragomir, Inequalities of Jensens type for generalized k-g-fractional integrals of functions for which the composite $f \circ {g^{ - 1}}$ is convex, Fract. Differ. Calc., 8 (2018), 127-150.
    [19] F. Jarad, E. Ugurlu, T. Abdeljawad, et al. On a new class of fractional operators, Adv. Differ. Equ., 2017 (2017), 247.
    [20] T. Tunc, H. Budak, F. Usta, et al. On new generalized fractional integral operators and related fractional inequalities, Available from: https://www.researchgate.net/publication/313650587.
    [21] M. Z. Sarikaya, M. Dahmani, M. E. Kiris, et al. (k, s)-Riemann-Liouville fractional integral and applications, Hacet. J. Math. Stat., 45 (2016), 77-89.
    [22] T. O. Salim, A. W. Faraj, A generalization of Mittag-Leffler function and integral operator associated with integral calculus, J. Fract. Calc. Appl., 3 (2012), 1-13.
    [23] G. Rahman, D. Baleanu, M. A. Qurashi, et al. The extended Mittag-Leffler function via fractional calculus, J. Nonlinear Sci. Appl., 10 (2017), 4244-4253.
    [24] H. M. Srivastava, Z. Tomovski, Fractional calculus with an integral operator containing generalized Mittag-Leffler function in the kernel, Appl. Math. Comput., 211 (2009), 198-210.
    [25] T. R. Parbhakar, A singular integral equation with a generalized Mittag-Leffler function in the kernel, Yokohama Math. J., 19 (1971), 7-15.
    [26] Y. C. Kwun, G. Farid, S. M. Kang, et al. Derivation of bounds of several kinds of operators via (s, m)-convexity, Adv. Differ. Equ., 2020 (2020), 1-14.
    [27] G. Farid, Bounds of fractional integral operators containing Mittag-Leffler function, Sci. Bull., Politeh. Univ. Buchar., Ser. A, 81 (2019), 133-142.
    [28] G. Farid, Some Riemann-Liouville fractional integral inequalities for convex functions, J. Anal., 27 (2019), 1095-1102.
    [29] G. Farid, W. Nazeer, M. S. Saleem, et al. Bounds of Riemann-Liouville fractional integrals in general form via convex functions and their applications, Mathematics, 6 (2018), 248.
    [30] G. Farid, Bounds of Riemann-Liouville fractional integral operators, Comput. Methods Differ. Equ., 2020. to appear.
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3298) PDF downloads(107) Cited by(7)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog