Research article Special Issues

Nonlinear differential equations of fourth-order: Qualitative properties of the solutions

  • Received: 21 June 2020 Accepted: 09 August 2020 Published: 17 August 2020
  • MSC : 34C10, 34K11

  • In this paper, we study the oscillation of solutions for a fourth-order neutral nonlinear differential equation, driven by a $p$-Laplace differential operator of the form $ \begin{equation*} \begin{cases} \left( r\left( t\right) \Phi _{p_{1}}[w^{\prime \prime \prime }\left( t\right) ]\right) ^{\prime }+q\left( t\right) \Phi _{p_{2}}\left( u\left( \vartheta \left( t\right) \right) \right) = 0, & \\ r\left( t\right) \gt 0,\ r^{\prime }\left( t\right) \geq 0,\ t\geq t_{0} \gt 0, & \end{cases} \end{equation*} $ The oscillation criteria for these equations have been obtained. Furthermore, some examples are given to illustrate the criteria.

    Citation: Omar Bazighifan. Nonlinear differential equations of fourth-order: Qualitative properties of the solutions[J]. AIMS Mathematics, 2020, 5(6): 6436-6447. doi: 10.3934/math.2020414

    Related Papers:

  • In this paper, we study the oscillation of solutions for a fourth-order neutral nonlinear differential equation, driven by a $p$-Laplace differential operator of the form $ \begin{equation*} \begin{cases} \left( r\left( t\right) \Phi _{p_{1}}[w^{\prime \prime \prime }\left( t\right) ]\right) ^{\prime }+q\left( t\right) \Phi _{p_{2}}\left( u\left( \vartheta \left( t\right) \right) \right) = 0, & \\ r\left( t\right) \gt 0,\ r^{\prime }\left( t\right) \geq 0,\ t\geq t_{0} \gt 0, & \end{cases} \end{equation*} $ The oscillation criteria for these equations have been obtained. Furthermore, some examples are given to illustrate the criteria.


    加载中


    [1] R. Agarwal, S. R. Grace, D. O'Regan, Oscillation criteria for certain nth order differential equations with deviating arguments, J. Math. Anal. Appl., 262 (2001), 601-622. doi: 10.1006/jmaa.2001.7571
    [2] C. Vetro, Pairs of nontrivial smooth solutions for nonlinear Neumann problems, Appl. Math. Lett., 103 (2020), 1-6.
    [3] T. Li, B. Baculíková, J. Džurina, et al. Oscillation of fourth order neutral differential equations with p-Laplacian like operators, Bound. Value Probl., 2014 (2014), 1-9. doi: 10.1186/1687-2770-2014-1
    [4] S. Liu, Q. Zhang, Y. Yu, Oscillation of even-order half-linear functional differential equations with damping, Comput. Math. Appl., 61 (2011), 2191-2196. doi: 10.1016/j.camwa.2010.09.011
    [5] Q. Zhang, T. Li, Asymptotic stability of compact and linear θ-methods for space fractional delay generalized diffusion equation, J. Sci. Comput., 81 (2019), 2413-2446. doi: 10.1007/s10915-019-01091-1
    [6] Q. Zhang, C. Zhang, A compact difference scheme combined with extrapolation techniques for solving a class of neutral delay parabolic differential equations, Appl. Math. Lett., 26 (2013), 306-312. doi: 10.1016/j.aml.2012.09.015
    [7] Q. Zhang, M. Chen, Y. Xu, et al. Compact θ-method for the generalized delay diffusion equation, Appl. Math. Comput., 316 (2018), 357-369.
    [8] C. Park, O. Moaaz, O. Bazighifan, Oscillation results for higher order differential equations, Axioms, 9 (2020), 1-11.
    [9] O. Bazighifan, P. Kumam, Oscillation theorems for advanced differential equations with pLaplacian like operators, Mathematics, 8 (2020), 1-10.
    [10] O. Bazighifan, T. Abdeljawad, Improved approach for studying oscillatory properties of fourthorder advanced differential equations with p-Laplacian like operator, Mathematics, 8 (2020), 1- 11.
    [11] C. Zhang, R. Agarwal, T. Li, Oscillation and asymptotic behavior of higher-order delay differential equations with p-Laplacian like operators, J. Math. Anal. Appl., 409 (2014), 1093-1106. doi: 10.1016/j.jmaa.2013.07.066
    [12] I. T. Kiguradze, T. A. Chanturia, Asymptotic Properties of Solutions of Nonautonomous Ordinary Differential Equations, Springer Netherlands, 1993.
    [13] C. G. Philos, A new criterion for the oscillatory and asymptotic behavior of delay differential equations, Bull. Acad. Pol. Sci. Ser. Sci. Math., 39 (1981), 61-64.
    [14] R. Agarwal, S. Grace, D. O'Regan, Oscillation Theory for Difference and Functional Differential Equations, Springer Science & Business Media, 2000.
    [15] G. E. Chatzarakis, E. M. Elabbasy and O. Bazighifan, An oscillation criterion in 4th-order neutral differential equations with a continuously distributed delay, Adv. Difference Equ., 2019 (2019), 1-9. doi: 10.1186/s13662-018-1939-6
    [16] R. P. Agarwal, S. R. Grace, Oscillation theorems for certain functional differential equations of higher order, Math. Comput. Model., 39 (2004), 1185-1194. doi: 10.1016/S0895-7177(04)90539-0
    [17] O. Moaaz, E. M. Elabbasy, A. Muhib, Oscillation criteria for even-order neutral differential equations with distributed deviating arguments, Adv. Differ. Equ., 2019 (2019), 1-10. doi: 10.1186/s13662-018-1939-6
    [18] C. Zhang, T. Li, B. Sun, et al. On the oscillation of higher-order half-linear delay differential equations, Appl. Math. Lett., 24 (2011), 1618-1621. doi: 10.1016/j.aml.2011.04.015
    [19] O. Bazighifan, E. M. Elabbasy, O. Moaaz, Oscillation of higher-order differential equations with distributed delay, J. Inequal. Appl., 55 (2019), 1-9.
    [20] O. Bazighifan, H. Ramos, On the asymptotic and oscillatory behavior of the solutions of a class of higher-order differential equations with middle term, Appl. Math. Lett., 107 (2020), 1-9.
    [21] O. Bazighifan, Kamenev and Philos-types oscillation criteria for fourth-order neutral differential equations, Adv. Differ. Equ., 201 (2020), 1-12.
    [22] E. M. Elabbasy, C. Cesarano, O. Bazighifan, et al. Asymptotic and oscillatory behavior of solutions of a class of higher-order differential equations, Symmetry, 11 (2019), 1-9.
    [23] J. Džurina, I. Jadlovská, Oscillation theorems for fourth order delay differential equations with a negative middle term, Math. Method. Appl. Sci., 40 (2017), 7830-7842. doi: 10.1002/mma.4563
    [24] S. Grace, R. Agarwal, J. Graef, Oscillation theorems for fourth order functional differential equations, J. Appl. Math. Comput., 30 (2009), 75-88. doi: 10.1007/s12190-008-0158-9
    [25] I. Gyèori, G. Ladas, Oscillation Theory of Delay Differential Equations with Applications, Oxford University Press, USA, 1991.
    [26] O. Moaaz, E. M. Elabbasy, O. Bazighifan, On the asymptotic behavior of fourth-order functional differential equations, Adv. Differ. Equ., 261 (2017), 1-13.
    [27] O. Moaaz, New criteria for oscillation of nonlinear neutral differential equations, Adv. Differ. Equ., 2019 (2019), 1-11. doi: 10.1186/s13662-018-1939-6
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3570) PDF downloads(237) Cited by(2)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog