Research article

Invariants in partition classes

  • Received: 14 April 2020 Accepted: 14 June 2020 Published: 05 August 2020
  • MSC : 05A17, 11P81

  • With $ p\left(n, k\right) $ denote the numerical value of the number of partitions of the natural number $ n $ on exactly $ k $ parts. Form an arithmetic progression of $ k $ natural numbers with an arbitrary first value $ x_1 = p\left(j, k\right)$, and the difference $ d = m \cdot LCM\left(1, 2, \dots, k\right) $, where $ j$ and $ m $ an arbitrary natural numbers. Calculate all the values of $ \left\{p\left(x_i, k\right)\right\}_{i = 1, 2, \dots, k} $ and make the alternating sum with the appropriate binomial coefficients $ \sum_{i = 0}^{k-1}\left(-1\right)^i \binom{k-1}{i}p\left(j+i\cdot d, k\right). $ The last sum has a constant value equal to $ \left(-1\right)^{k-1}\frac{d^{k-1}}{k!} $, regardless of the first selected member $ x_1 $ of the arithmetic progression. We call this sum the first partition invariant, and it exists in all classes. In addition to these values there are a whole number of other invariant values, but they exist only in some classes, and so forth.

    Citation: Aleksa Srdanov. Invariants in partition classes[J]. AIMS Mathematics, 2020, 5(6): 6233-6243. doi: 10.3934/math.2020401

    Related Papers:

  • With $ p\left(n, k\right) $ denote the numerical value of the number of partitions of the natural number $ n $ on exactly $ k $ parts. Form an arithmetic progression of $ k $ natural numbers with an arbitrary first value $ x_1 = p\left(j, k\right)$, and the difference $ d = m \cdot LCM\left(1, 2, \dots, k\right) $, where $ j$ and $ m $ an arbitrary natural numbers. Calculate all the values of $ \left\{p\left(x_i, k\right)\right\}_{i = 1, 2, \dots, k} $ and make the alternating sum with the appropriate binomial coefficients $ \sum_{i = 0}^{k-1}\left(-1\right)^i \binom{k-1}{i}p\left(j+i\cdot d, k\right). $ The last sum has a constant value equal to $ \left(-1\right)^{k-1}\frac{d^{k-1}}{k!} $, regardless of the first selected member $ x_1 $ of the arithmetic progression. We call this sum the first partition invariant, and it exists in all classes. In addition to these values there are a whole number of other invariant values, but they exist only in some classes, and so forth.


    加载中


    [1] A. Srdanov, The universal formulas for the number of partitions, Proc. Indian Acad. Sci. Math. Sci., 128 (2018), 40.
    [2] Aleksa Srdanov, Fractal form of the partition functions p (n), AIMS Math., 5 (2020), 2539-2568. doi: 10.3934/math.2020167
    [3] A. Srdanov, R. Stefanovic, A. Jankovic, et al. Reducing the number of dimensions of the possible solution space as a method for finding the exact solution of a system with a large number of unknowns, Math. Found. Comput., 2 (2019), 83-93. doi: 10.3934/mfc.2019007
    [4] E. R. Heineman, Generalized Vandermonde determinants, Trans. Amer. Math. Soc., 31 (1929), 464-476.
    [5] J. W. L. Glaisher, On the number of partitions of a number into a given number of parts, Quart. J. Pure Appl. Math., 40 (1909), 57-143.
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3101) PDF downloads(147) Cited by(0)

Article outline

Figures and Tables

Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog