Research article Special Issues

Multiple positive periodic solutions of a Gause-type predator-prey model with Allee effect and functional responses

  • Received: 23 June 2020 Accepted: 20 July 2020 Published: 29 July 2020
  • MSC : 34C25; 92D25

  • This paper deals with a Gause-type predator-prey model with Allee effect and Holling type III functional response. We also consider the influence of predator competition and the artificial harvesting on predator-prey system. The existence of multiple positive periodic solutions of the predator-prey model is established by using the Mawhin coincidence degree theory.

    Citation: Shanshan Yu, Jiang Liu, Xiaojie Lin. Multiple positive periodic solutions of a Gause-type predator-prey model with Allee effect and functional responses[J]. AIMS Mathematics, 2020, 5(6): 6135-6148. doi: 10.3934/math.2020394

    Related Papers:

  • This paper deals with a Gause-type predator-prey model with Allee effect and Holling type III functional response. We also consider the influence of predator competition and the artificial harvesting on predator-prey system. The existence of multiple positive periodic solutions of the predator-prey model is established by using the Mawhin coincidence degree theory.


    加载中


    [1] J. Wang, J. Shi, J. Wei, Predator-prey system with strong Allee effect in prey, J. Math. Biol., 62 (2011), 291-331. doi: 10.1007/s00285-010-0332-1
    [2] Z. Du, X. Zhang, H. Zhu, Dynamics of Nonconstant Steady States of the Sel'kov Model with Saturation Effect, J. Nonlinear Sci., 30 (2020), 1553-1577. doi: 10.1007/s00332-020-09617-w
    [3] A. J. Lotka, Elements of Physical Biology, Williams & Wilkins Co., Baltimore, 1925.
    [4] V. Volterra, Variazionie fluttuazioni del numero d'individui in specie animali convivent, Mem. Acad. Lincei Roma., 2 (1926), 31-113.
    [5] H. I. Freedman, Deterministic Mathematical Models in Population Ecology, Monogr. Textb. Pure Appl. Math., vol. 57. Dekker, New York, 1980.
    [6] K. Hasik, On a predator-prey system of Gause type, J. Math. Biol., 60 (2010), 59-74. doi: 10.1007/s00285-009-0257-8
    [7] X. Ding, B. Su, J. Hao, Positive periodic solutions for impulsive Gause-type predator-prey systems, Appl. Math. Comput., 218 (2012), 6785-6797.
    [8] V. Křivan, On the Gause predator-prey model with a refuge: A fresh look at the history, J. Theo. Bio., 274 (2011), 67-73. doi: 10.1016/j.jtbi.2011.01.016
    [9] Y. Lv, R. Yuan, Existence of traveling wave solutions for Gause-type models of predator-prey systems, Appl. Math. Comput., 229 (2014), 70-84.
    [10] A. J. Terry, Predator-prey models with component Allee effect for predator reproduction, J. Math. Biol., 71 (2015), 1325-1352. doi: 10.1007/s00285-015-0856-5
    [11] R. Cui, J. Shi, B. Wu, Strong Allee effect in a diffusive predator-prey system with a protection zone, J. Differential Equations, 256 (2014), 108-129. doi: 10.1016/j.jde.2013.08.015
    [12] Y. Cai, C. Zhao, W. Wang, et al. Dynamics of a Leslie-Gower predator-prey model with additive Allee effect, Appl. Math. Model., 39 (2015), 2092-2106. doi: 10.1016/j.apm.2014.09.038
    [13] K. Baisad, S. Moonchai, Analysis of stability and Hopf bifurcation in a fractional Gauss-type predator-prey model with Allee effect and Holling type-III functional response, Adv. Differ. Equ., 2018 (2018), 1-20. doi: 10.1186/s13662-017-1452-3
    [14] X. Guan, F. Chen, Dynamical analysis of a two species amensalism model with Beddington-DeAngelis functional response and Allee effect on the second species, Nonlinear Anal. Real World Appl., 48 (2019), 71-93. doi: 10.1016/j.nonrwa.2019.01.002
    [15] D. Xiao, L. S. Jennings, Bifurcations of a ratio-dependent predator-prey system with constant rate harvesting, SIAM J. Appl. Math., 65 (2005), 737-753. doi: 10.1137/S0036139903428719
    [16] R. M. Etoua, C. Rousseau, Bifurcation analysis of a generalized Gause model with prey harvesting and a generalized Holling response function of type III, J. Differential Equations, 249 (2010), 2316-2356. doi: 10.1016/j.jde.2010.06.021
    [17] S. Laurin, C. Rousseau, Organizing center for the bifurcation analysis of a generalized Gause model with prey harvesting and Holling response function of type III, J. Differential Equations, 251 (2011), 2980-2986. doi: 10.1016/j.jde.2011.04.017
    [18] Z. Du, X. Chen, Z. Feng, Multiple postive periodic solutions to a predator-prey model with Leslie-Gower Holling-type II functional response and harvesting terms, Discrete Contin. Dyn.Syst. Ser. S., 7 (2014), 1203-1214.
    [19] Z. Du, Y. Lv, Permanence and almost periodic solution of a Lotka-Volterra model with mutual interference and time delays, Appl. Math. Model., 37 (2013), 1054-1068. doi: 10.1016/j.apm.2012.03.022
    [20] M. Negreanu, J. I. Tello, Global existence and asymptotic behavior of solutions to a Predator-Prey chemotaxis system with two chemicals, J. Math. Anal. Appl., 474 (2019), 1116-1131. doi: 10.1016/j.jmaa.2019.02.007
    [21] Z. Du, Z. Feng, X. Zhang, Traveling wave phenomena of n-dimensional diffusive predator-prey systems, Nonlinear Anal. Real World Appl., 41 (2018), 288-312. doi: 10.1016/j.nonrwa.2017.10.012
    [22] X. Chen, Z. Du, Existence of positive periodic solutions for a neutral delay predator-prey Model with Hassell-Varley type functional response and impulse, Qual. Theory Dyn. Syst., 17 (2018), 67-80. doi: 10.1007/s12346-017-0223-6
    [23] R. Gaines, J. Mawhin, Coincidence Degree and Nonlinear Differential Equations, Springer-Verlag, Berlin, 1977.
    [24] X. Lin, Q. Zhang, Existence of solution for a p-Laplacian multi-point boundary value problem at resonance, Qual. Theory Dyn. Syst., 17 (2018), 143-154. doi: 10.1007/s12346-017-0259-7
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3678) PDF downloads(311) Cited by(9)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog