Research article

Existence of infinitely many solutions for a nonlocal problem

  • Received: 12 May 2020 Accepted: 22 June 2020 Published: 10 July 2020
  • MSC : 35B33, 35J60

  • In this paper, we deal with a class of fractional Hénon equation and by using the Lyapunov-Schmidt reduction method, under some suitable assumptions, we derive the existence of infinitely many solutions, whose energy can be made arbitrarily large. Compared to the previous works, we encounter some new challenges because of the nonlocal property for fractional Laplacian. But by doing some delicate estimates for the nonlocal term we overcome the difficulty and find infinitely many nonradial solutions.

    Citation: Jing Yang. Existence of infinitely many solutions for a nonlocal problem[J]. AIMS Mathematics, 2020, 5(6): 5743-5767. doi: 10.3934/math.2020369

    Related Papers:

  • In this paper, we deal with a class of fractional Hénon equation and by using the Lyapunov-Schmidt reduction method, under some suitable assumptions, we derive the existence of infinitely many solutions, whose energy can be made arbitrarily large. Compared to the previous works, we encounter some new challenges because of the nonlocal property for fractional Laplacian. But by doing some delicate estimates for the nonlocal term we overcome the difficulty and find infinitely many nonradial solutions.


    加载中


    [1] D. Cao, S. Peng, The asymptotic behavior of the ground state solutions for Hénon equation, J. Math. Anal. Appl., 278 (2003), 1-17. doi: 10.1016/S0022-247X(02)00292-5
    [2] D. Cao, S. Peng, S. Yan, Asymptotic behavior of ground state solutions for Hénon equation, IMA J. Appl. Math., 74 (2009), 468-480. doi: 10.1093/imamat/hxn035
    [3] W. Chen, C. Li, B. Ou, Classification of solutions for an integral equation, Comm. Pure Appl. Math., 59 (2006), 330-343. doi: 10.1002/cpa.20116
    [4] W. Choi, S. Kim, K.-A. Lee, Asymptotic behavior of solutions for nonlinear elliptic problems with the fractional Laplacian, J. Funct. Anal., 266 (2014), 6531-6598. doi: 10.1016/j.jfa.2014.02.029
    [5] J. DÁvia, M. Del Pino, Y. Sire, Non degeneracy of the bubble in the critical case for nonlocal equations, Proc. Amer. Math. Soc., 141 (2013), 3865-3870. doi: 10.1090/S0002-9939-2013-12177-5
    [6] M. del Pino, P. Felmer, M. Musso, Two-bubble solutions in the super-critical Bahri-Coron's problem, Calc. Var. Partial Dif., 16 (2003), 113-145. doi: 10.1007/s005260100142
    [7] S. Dipierro, G. Palatucci, E. Valdinoci, Existence and symmetry results for a Schrödinger type problem involving the fractional Laplacian, Matematiche, 68 (2013), 201-216.
    [8] R.-L. Frank, E.-H. Lieb, Inversion positivity and the sharp Hardy-Littlewood-Sobolev inequality, Calc. Var. Partial Dif., 39 (2010), 85-99. doi: 10.1007/s00526-009-0302-x
    [9] R.-L. Frank, E.-H. Lieb, A new rearrangement-free proof of the sharp Hardy-Littlewood- Sobolev inequality, Spectral Theory, Function Spaces and Inequalities, 219 (2012), 55-67.
    [10] E.-H. Lieb, Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities, Ann. Math., 118 (1983), 349-374. doi: 10.2307/2007032
    [11] N. Hirano, Existence of positive solutions for the Hénon equation involving critical Sobolev exponent, J. Differ. Equations 247 (2009), 1311-1333.
    [12] W. Long, J. Yang, Positive or sign-changing solutions for a critical semilinear non-local equation, Z. Angew. Math. Phys., 67 (2016), 45.
    [13] W.-M. Ni, A nonlionear Dirichlet problem on the unit ball and its application, Indiana Univ. Math. J., 6 (1982), 801-807.
    [14] S. Peng, Multiple boundary concentrating solutions to Dirichlet problem of Hénon equation, Acta Math. Appl. Sin., 22 (2006), 137-162. doi: 10.1007/s10255-005-0293-0
    [15] A. Pistoia, E. Serra, Multi-peak solutions for the Hénon equation with slightly subcritical growth, Math. Z., 256 (2007), 75-97. doi: 10.1007/s00209-006-0060-9
    [16] X. Ros-Oton, J. Serra, The Pohozaev identity for the fractional Laplacian, Arch. Ration. Mech. Anal., 213 (2014), 587-628. doi: 10.1007/s00205-014-0740-2
    [17] E. Serra, Non-radial positive solutions for the Hénon equation with critical growth, Calc. Var. Partial Dif., 23 (2005), 301-326. doi: 10.1007/s00526-004-0302-9
    [18] D. Smets, J. Su, M. Willem, Non-radial ground states for the Hénon equation, Comm. Contemp. Math., 4 (2002), 467-480. doi: 10.1142/S0219199702000725
    [19] R. Servadei, E. Valdinoci, A Brezis-Nirenberg result for non-local critical equations in low dimension, Commun. Pure Appl. Anal., 12 (2013), 2445-2464. doi: 10.3934/cpaa.2013.12.2445
    [20] J. Tan, The Brezis-Nirenberg type problem involving the square root of the Laplacian, Calc. Var. Partial Dif., 42 (2012), 21-41.
    [21] J. Tan, Positive solutions for nonlocal ellipitc problems, Discrete Contin. Dyn. Syst., 33 (2013), 837-859. doi: 10.3934/dcds.2013.33.837
    [22] J. Wei, S. Yan, Infinitely many positive solutions for the prescribed scalar curvature problem on $\mathbb{S}^N$, J. Funct. Anal., 258 (2010), 3048-3081.
    [23] J. Wei, S. Yan, Infinitely many nonradial solutions for the Hénon equation with critical growth, Rev. Mat. Iberoam., 29 (2013), 997-1020. doi: 10.4171/RMI/747
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2979) PDF downloads(226) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog