Research article

Definite integrals involving product of logarithmic functions and logarithm of square root functions expressed in terms of special functions

  • Received: 02 June 2020 Accepted: 06 July 2020 Published: 09 July 2020
  • MSC : 01A55, 11M06, 11M35, 30-02, 30D10, 30D30, 30E20

  • The derivation of integrals in the table of Gradshteyn and Ryzhik in terms of closed form solutions is always of interest. We evaluate several of these definite integrals of the form $\int_{0}^{\infty}\ln^k(\alpha y)\ln(R(y))dy$ in terms of a special function, where $R(y)$ is a general function and $k$ and $\alpha$ are arbitrary complex numbers.

    Citation: Robert Reynolds, Allan Stauffer. Definite integrals involving product of logarithmic functions and logarithm of square root functions expressed in terms of special functions[J]. AIMS Mathematics, 2020, 5(6): 5724-5733. doi: 10.3934/math.2020367

    Related Papers:

  • The derivation of integrals in the table of Gradshteyn and Ryzhik in terms of closed form solutions is always of interest. We evaluate several of these definite integrals of the form $\int_{0}^{\infty}\ln^k(\alpha y)\ln(R(y))dy$ in terms of a special function, where $R(y)$ is a general function and $k$ and $\alpha$ are arbitrary complex numbers.


    加载中


    [1] M. Abramowitz, I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9 Eds., New York, Dover, 1982.
    [2] T. M. Apostol, Introduction to Analytic Number Theory, New York, Springer-Verlag, 1995.
    [3] A. Erdéyli, W. Magnus, F. Oberhettinger, et al. Higher Transcendental Functions, McGraw-Hill Book Company, Inc., New York-Toronto-London, 1953.
    [4] D. Bierens de Haan, Nouvelles Tables d'intégrales définies, Amsterdam, 1867.
    [5] J. Guillera, J. Sondow, Double integrals and infinite products for some classical constants via analytic continuations of Lerch's transcendent, Ramanujan J., 16 (2008), 247.
    [6] I. S. Gradshteyn, I. M. Ryzhik, Tables of Integrals, Series and Products, 6 Eds., Academic Press, USA, 2000.
    [7] A. P. Prudnikov, Y. A. Brychkov, O. I. Marichev, Integrals and Series, More Special Functions, USSR Academy of Sciences, Moscow, 1990.
    [8] R. Reynolds, A. Stauffer, A Method for Evaluating Definite Integrals in terms of Special Functions with Examples, Available from: https://arxiv.org/pdf/1906.04927.pdf.
    [9] H. J. Weber, G. B. Arfken, Mathematical Methods for Physicists, ISE. Academic Press, 2004.
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3444) PDF downloads(235) Cited by(6)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog