Research article

Mate and mutual mate functions in a seminearring

  • Received: 10 February 2020 Accepted: 31 May 2020 Published: 09 June 2020
  • MSC : 16Y30, 16Y60

  • This work extends the concept of mate functions in nearrings to seminearrings and discusses the properties of mate functions. We obtain a complete characterisation of mate functions in a seminearring R. We show that every mate function φ of R gives rise to a mutual mate function for R. We derive a necessary and sufficient condition for a seminearring to possess a unique mutual mate function. We also obtain a necessary and sufficient condition for a seminearring to be a seminearfield vis-a-vis the behaviour of its mate functions.

    Citation: Manikandan G, Perumal R. Mate and mutual mate functions in a seminearring[J]. AIMS Mathematics, 2020, 5(5): 4974-4982. doi: 10.3934/math.2020318

    Related Papers:

  • This work extends the concept of mate functions in nearrings to seminearrings and discusses the properties of mate functions. We obtain a complete characterisation of mate functions in a seminearring R. We show that every mate function φ of R gives rise to a mutual mate function for R. We derive a necessary and sufficient condition for a seminearring to possess a unique mutual mate function. We also obtain a necessary and sufficient condition for a seminearring to be a seminearfield vis-a-vis the behaviour of its mate functions.


    加载中


    [1] W. G. Van Hoorn, B. Van Rootselaar, Fundamental notions in the theory of seminearrings, Compos. Math., 18 (1967), 65-78.
    [2] A. Hoogewijs, Semi-nearring embeddings, Med. Konink. Acad. Wetensch. Lett. Schone Kunst. België Kl. Wetensch, 32 (1970), 3-11.
    [3] H. J. Weinert, Seminearrings, seminearfields and their semigroup-theoretical background, Semigroup Forum, 24 (1982), 231-254. doi: 10.1007/BF02572770
    [4] H. J. Weinert, Extensions of seminearrings by semigroups of right quotients, Lect. Notes Math., 998 (1983), 412-486. doi: 10.1007/BFb0062045
    [5] H. J. Weinert, Partially and fully ordered seminearrings and nearrings, North-Holland Mathematics Studies, 137 (1987), 277-294. doi: 10.1016/S0304-0208(08)72311-9
    [6] S. A. Huq, Embedding problems, module theory, semi-simplicity of seminear-rings, Ann. Soc. Sci. Bruxelles Ser., 1 (1990), 49-62.
    [7] J. Ahsan, Seminear-rings characterized by their S-ideals, I, P. Jpn. Acad. A-Math., 71 (1995), 101-103. doi: 10.3792/pjaa.71.101
    [8] T. Boykett, Seminearring Models of Reversible Computation I, 1997, 1-19.
    [9] J. Von Neumann, On regular rings, P. Natl. Acad. Sci. USA., 22 (1936), 707-713. doi: 10.1073/pnas.22.12.707
    [10] J. C. Beidleman, A note on regular near-rings, J. Indian Math. Soc., 33 (1969), 207-210.
    [11] S. Ligh, On regular near-rings, Math. Japon., 15 (1970), 7-13.
    [12] S. Suryanarayanan, N. Ganesan, Stable and Pseudo stable near-rings, Indian J. Pure Appl. Math., 19 (1988), 1206-1216.
    [13] G. Pilz, Near-rings: The Theory and its Applicationss, North-Holland Publishing Company, 1983.
    [14] J. Ahsan, Seminear-rings characterized by their S-ideals, II, P. Jpn. Acad. A-Math., 71 (1995), 111-113. doi: 10.3792/pjaa.71.111
    [15] K. V. Krishna, N. Chatterjee, Representation of near-semirings and approximation of their categories, Southeast Asian Bulletin of Mathematics, 31 (2007), 903-914.
    [16] M. Shabir, I. Ahmed, Weakly regular seminearrings, International Electronic Journal of Algebra, 2 (2007), 114-126.
    [17] N. H. McCoy, The Theory of rings, Macmillan and Co, 1970.
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3708) PDF downloads(265) Cited by(8)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog