Research article

Implicit fractional differential equation with anti-periodic boundary condition involving Caputo-Katugampola type

  • Received: 30 December 2019 Accepted: 25 March 2020 Published: 20 April 2020
  • MSC : 34B15, 34B18, 26A33, 34A12

  • This paper deals with a nonlinear implicit fractional differential equation with the anti-periodic boundary condition involving the Caputo-Katugampola type. The existence and uniqueness results are established by applying the fixed point theorems of Krasnoselskii and Banach. Further, by using generalized Gronwall inequality the Ulam-Hyers stability results are proved. To demonstrate the effectiveness of the main results, appropriate examples are granted.

    Citation: Saleh S. Redhwan, Sadikali L. Shaikh, Mohammed S. Abdo. Implicit fractional differential equation with anti-periodic boundary condition involving Caputo-Katugampola type[J]. AIMS Mathematics, 2020, 5(4): 3714-3730. doi: 10.3934/math.2020240

    Related Papers:

  • This paper deals with a nonlinear implicit fractional differential equation with the anti-periodic boundary condition involving the Caputo-Katugampola type. The existence and uniqueness results are established by applying the fixed point theorems of Krasnoselskii and Banach. Further, by using generalized Gronwall inequality the Ulam-Hyers stability results are proved. To demonstrate the effectiveness of the main results, appropriate examples are granted.


    加载中


    [1] M. Hamid, M. Usman, Z. H. Khan, et al. Dual solutions and stability analysis of flow and heat transfer of Casson fluid over a stretching sheet, Phys. Lett. A, 383 (2019), 2400-2408. doi: 10.1016/j.physleta.2019.04.050
    [2] M. Hamid, M. Usman, Z. H. Khan, et al. Numerical study of unsteady MHD flow of Williamson nanofluid in a permeable channel with heat source/sink and thermal radiation, Europ. Phys. J. Plus, 133 (2018), 527. doi: 10.1140/epjp/i2018-12322-5
    [3] M. Hamid, M. Usman, T. Zubair, et al. Shape effects of MoS2 nanoparticles on rotating flow of nanofluid along a stretching surface with variable thermal conductivity: A Galerkin approach, Int. J. Heat Mass Transfer, 124 (2018), 706-714. doi: 10.1016/j.ijheatmasstransfer.2018.03.108
    [4] S. T. Mohyud-Din, M. Usman, K. Afaq, et al. Examination of carbon-water nanofluid flow with thermal radiation under the effect of Marangoni convection, Eng. Comput., 34 (2017), 2330-2343. doi: 10.1108/EC-04-2017-0135
    [5] M. Usman, M. M. Din, T. Zubair, et al. Fluid flow and heat transfer investigation of blood with nanoparticles through porous vessels in the presence of magnetic field, J. Algorithms Comput. Technol., 13 (2018), 1748301818788661.
    [6] M. Usman, M. Hamid, R. U. Haq, et al. Heat and fluid flow of water and ethylene-glycol based Cu-nanoparticles between two parallel squeezing porous disks: LSGM approach, Int. J. Heat Mass Transfer, 123 (2018), 888-895. doi: 10.1016/j.ijheatmasstransfer.2018.03.030
    [7] A. A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier Science Limited, 204, 2006.
    [8] A. B. Malinowska, T. Odzijewicz, D. F. M. Torres, Advanced Methods in the Fractional Calculus of Variations, Springer, Berlin, 2015.
    [9] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.
    [10] R. P. Agarwal, Y. Zhou, Y. He, Existence of fractional neutral functional differential equations, Comput. Math. Appl., 59 (2010), 1095-1100. doi: 10.1016/j.camwa.2009.05.010
    [11] D. Baleanu, K. Diethelm, E. Scalas, et al. Fractional Calculus Models and Numerical Methods, Series on Complexity, Nonlinearity and Chaos, World Scientific, 3, 2012.
    [12] D. Baleanu, O. G. Mustafa, R. P. Agarwal, On Lp -solutions for a class of sequential fractional differential equations, Appl. Math. Comput., 218 (2011), 2074-2081.
    [13] U. N. Katugampola, New approach to a generalized fractional integral. Appl. Math. Comput., 218 (2011), 860-865.
    [14] A. G. Butkovskii, S. S. Postnov, E. A. Postnova, Fractional integro-differential calculus and its control-theoretical applications i-mathematical fundamentals and the problem of interpretation, Autom. Remote Control, 74 (2013), 543-574. doi: 10.1134/S0005117913040012
    [15] S. Gaboury, R. Tremblay, B. J. Fugere, Some relations involving a generalized fractional derivative operator, J. Inequalities Appl., 167, 2013.
    [16] R. Herrmann, Fractional Calculus: An Introduction for Physicists, World Scienti c, River Edge, New Jerzey, 2 Eds., 2014.
    [17] G. Jumarie, On the solution of the stochastic differential equation of exponential growth driven by fractional brownian motion, Appl. Math. Lett., 18 (2005), 817-826. doi: 10.1016/j.aml.2004.09.012
    [18] U. N. Katugampola, A new approach to generalized fractional derivatives, Bull. Math. Anal. Appl., 6 (2014), 1-15.
    [19] U. N. Katugampola, Mellin transforms of the generalized fractional integrals and derivatives, Appl. Math. Comput., 257 (2015), 566-580.
    [20] U. N. Katugampola, Existence and uniqueness results for a class of generalized fractional differential equations, Preprint, arXiv:1411.5229, 2014.
    [21] R. Almeida, A Gronwall inequality for a general Caputo fractional operator, arXiv preprint arXiv:1705.10079, 2017.
    [22] D. S. Oliveira, E. Capelas de Oliveira, Hilfer-Katugampola fractional derivatives, Comput. Appl. Math., 37 (2018), 3672-3690. doi: 10.1007/s40314-017-0536-8
    [23] S. Abbas, M. Benchohra, J. R. Graef, et al. Implicit Fractional Differential and Integral Equations: Existence and Stability, Walter de Gruyter: London, UK, 2018.
    [24] M. Benchohra, S. Bouriah, M. A. Darwish, Nonlinear boundary value problem for implicit differential equations of fractional order in Banach spaces, Fixed Point Theory, 18 (2017), 457-470. doi: 10.24193/fpt-ro.2017.2.36
    [25] M. Benchohra, S. Bouriah, J. R. Graef, Nonlinear implicit differential equations of fractional order at resonance, Electron. J. Differential Equations, 324 (2016), 1-10.
    [26] M. Benchohra, J. E. Lazreg, Nonlinear fractional implicit differential equations, Commun. Appl. Anal., 17 (2013), 471-482.
    [27] E. Alvarez, C. Lizama, R. Ponce, Weighted pseudo anti-periodic solutions for fractional integrodifferential equations in Banach spaces, Appl. Math. Comput., 259 (2015), 164-172.
    [28] F. Chen, A. Chen, X. Wu, Anti-periodic boundary value problems with Riesz-Caputo derivative, Advances Difference Equations, 1 (2019), 119.
    [29] D. Yang, C. Bai, Existence of solutions for Anti-Periodic fractional differential inclusions involving Riesz-Caputo fractional derivative, Mathematics, 7 (2019), 630.
    [30] B. Ahmad, J. J. Nieto, Anti-periodic fractional boundary value problems, Comput. Math. Appl., 62 (2011), 1150-1156. doi: 10.1016/j.camwa.2011.02.034
    [31] M. Benchohra, J. E. Lazreg, Existence and Ulam stability for nonlinear implicit fractional differential equations with Hadamard derivative, Studia Universitatis Babes-Bolyai, Mathematica, 62 (2017), 27-38. doi: 10.24193/subbmath.2017.0003
    [32] L. Palve, M. S. Abdo, S. K. Panchal, Some existence and stability results of HilferHadamard fractional implicit differential fractional equation in a weighted space, preprint: arXiv:1910.08369v1 math. GM, (2019), 20.
    [33] I. A. Rus, Ulam stabilities of ordinary differential equations in a Banach space, Carpath. J. Math., 26 (2010), 103-107.
    [34] J. Wang, Y. Zhou, M. Medved, Existence and stability of fractional differential equations with Hadamard derivative, Topol. Methods Nonlinear Anal., 41 (2013), 113-133.
    [35] T. A. Burton, C. KirkÙ, A fixed point theorem of Krasnoselskii Schaefer type, Mathematische Nachrichten, 189 (1998), 23-31. doi: 10.1002/mana.19981890103
    [36] J. V. C. Sousa, E. C. Oliveira, A Gronwall inequality and the Cauchy-type problem by means of ψ-Hilfer operator, arXiv preprint arXiv:1709.03634, 2017.
    [37] M. Benchohra, S. Bouriah, Existence and stability results for nonlinear boundary value problem for implicit differential equations of fractional order, Moroccan J. Pure Appl. Anal., 1 (2015), 22-37. doi: 10.7603/s40956-015-0002-9
    [38] A. Boutiara, K. Guerbati, M. Benbachir, Caputo-Hadamard fractional differential equation with three-point boundary conditions in Banach spaces, AIMS Math., 5 (2019), 259-272.
    [39] S. S. Redhwan, S. L. Shaikh, M. S. Abdo, Theory of Nonlinear Caputo-Katugampola Fractional Differential Equations, arXiv preprint arXiv:1911.08884, 2019.
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3871) PDF downloads(305) Cited by(14)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog