Research article Special Issues

The deterministic and stochastic solutions of the Schrodinger equation with time conformable derivative in birefrigent fibers

  • Received: 14 November 2019 Accepted: 23 February 2020 Published: 03 March 2020
  • MSC : 35Qxx, 35C08, 35L05

  • In this manuscript, the deterministic and stochastic nonlinear Schrödinger equation with time conformable derivative is analysed in birefrigent fibers. Hermite transforms, white noise analysis and the modified fractional sub-equation method are used to obtain white noise functional solutions for this equation. These solutions consists of exact stochastic hyperbolic functions, trigonometric functions and wave solutions.

    Citation: Zeliha Korpinar, Mustafa Inc, Ali S. Alshomrani, Dumitru Baleanu. The deterministic and stochastic solutions of the Schrodinger equation with time conformable derivative in birefrigent fibers[J]. AIMS Mathematics, 2020, 5(3): 2326-2345. doi: 10.3934/math.2020154

    Related Papers:

  • In this manuscript, the deterministic and stochastic nonlinear Schrödinger equation with time conformable derivative is analysed in birefrigent fibers. Hermite transforms, white noise analysis and the modified fractional sub-equation method are used to obtain white noise functional solutions for this equation. These solutions consists of exact stochastic hyperbolic functions, trigonometric functions and wave solutions.



    加载中


    [1] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006.
    [2] I. Podlubny, Fractional Differential Equation, Academic Press, San Diego, 1999.
    [3] Z. Korpinar, M. Inc, M. Bayram, Theory and application for the system of fractional Burger equations with Mittag leffler kernel, Appl. Math. Comp., 367 (2020), 124781.
    [4] S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach, Switzerland, 1993.
    [5] F. Tchier, M. Inc, Z. S. Korpinar, et al., Solution of the time fractional reaction-diffusion equations with residual power series method, Advances Mech. Eng., 8 (2016), 1-10.
    [6] M. S. Hashemi, Invariant subspaces admitted by fractional differential equations with conformable derivatives, Chaos, Solitons Fractals, 107 (2018), 161-169.
    [7] K. M. Owolabi, Numerical analysis and pattern formation process for space-fractional superdiffusive systems, Discrete Contin. Dyn. Syst.-S 12 (2019), 543-566.
    [8] M. Inc, Z. S. Korpinar, M. M. Al Qurashi, et al., A new method for approximate solution of some nonlinear equations: Residual power series method, Advances Mech. Eng., 8 (2016), 1-7.
    [9] Z. Korpinar, On numerical solutions for the Caputo-Fabrizio fractional heat-like equation, Therm. Sci., 22 (2018), 87-95.
    [10] A. M. El-Tawil, A. M. Sohaly, Mean square convergent three points finite difference scheme for random partial differential equations, J. Egypt. Math. Soc., 20 (2012), 188-204.
    [11] M. Sohaly, Mean square Heun's method convergent for solving random differential initial value problems of first order, Am. J. Comput. Math., 4 (2014), 474-481.
    [12] M. A. E. Abdelrahman, M. A. Sohaly, O. Moaaz, The deterministic and stochastic solutions of the NLEEs in mathematical physics, Int. J. Appl. Comput. Math, 5 (2019), 40.
    [13] T. Körpinar, R. C. Demirkol, Z. Körpinar, Soliton propagation of electromagnetic field vectors of polarized light ray traveling in a coiled optical fiber in Minkowski space with Bishop equations, Eur. Phys. J. D, 73 (2019), 203.
    [14] T. Körpinar, R. C. Demirkol, Z. Körpinar, Soliton propagation of electromagnetic field vectors of polarized light ray traveling in a coiled optical fiber in the ordinary space, Int. J. Geom. Methods Modern Phys., 16 (2019), 1950117.
    [15] T. Körpinar, R. C. Demirkol, Z. Körpinar, Soliton propagation of electromagnetic field vectors of polarized light raytraveling along with coiled optical fiber on the unit 2-sphere S2, Revista Mexicana de Fisica 65 (2019), 626-633.
    [16] A. G. Hossam, H. Abd-Allah, Exact traveling wave solutions for the wick-type stochastic Schamel KdV equation, Phys. Res. Int., 2014 (2014), 937345.
    [17] Z. Korpinar, F. Tchier, M. Inc, et al., On exact solutions for the stochastic time fractional Gardner equatio, Physica Scripta, 2019, doi: 10.1088/1402-4896/ab62d5.
    [18] A. G. Hossam, A. S. Okb El Bab, A. M. Zabel, et al., The fractional coupled KdV equations: Exact solutions and white noise functional approach, Chin. Phys. B, 22 (2013), 080501.
    [19] A. H. Bhrawy, A. A. Alshaery, E. M. Hilal, et al., Optical solitons in birefringent fibers with spatio-temporal dispersion, Optik, 125 (2014), 4935-4944.
    [20] M. M. Al Qurashi, Z. S. Korpinar, M. Inc, Approximate solutions of bright and dark optical solitons in birefrigent fibers, Optik, 140 (2017), 45-61.
    [21] R. W. Boyd, Nonlinear Optics, Academic, San Diego, 1992.
    [22] A. Esen, T. A. Sulaiman, H. Bulut, et al., Optical solitons to the space-time fractional (1+1)-dimensional coupled nonlinear Schrödinger equation, Optik, 167 (2018), 150-156.
    [23] S. Ali, M. Younis, M. O. Ahmad, et al., Rogue wave solutions in nonlinear optics with coupled Schrödinger equations, Optical Quantum Electron., 50 (2018), 266.
    [24] M. Eslami, Exact traveling wave solutions to the fractional coupled nonlinear Schrodinger equations, Appl. Math. Comp., 285 (2016), 141-148.
    [25] M. S. Osman, D. Lu, M. M. A. Khater, et al., Complex wave structures for abundant solutions related to the complex Ginzburg-Landau model, Optik-Int. J. Light Electron Optics, 192 (2019), 162927.
    [26] B. Younas, M. Younis, Chirped solitons in optical monomode fibres modelled with Chen-Lee-Liu equation, Pramana-J. Phys., 94 (2020), 3.
    [27] D. Lu, M. S. Osman, M. M. A. Khater, et al., Analytical and numerical simulations for the kinetics of phase separation in iron (Fe-Cr-X (X = Mo, Cu)) based on ternary alloys, Physica A, 537 (2020), 122634.
    [28] A. Arif, M. Younis, M. Imran, et al., Solitons and lump wave solutions to the graphene thermophoretic motion system with a variable heat transmission, Eur. Phys. J. Plus, 134 (2019), 303.
    [29] V. S. Kumar, H. Rezazadeh, M. Eslami, et al., Jacobi elliptic function expansion method for solving KdV equation with conformable derivative and Dual-Power law nonlinearity, Int. J. Appl. Comput. Math., 5 (2019), 127.
    [30] D. Lu, K. U. Tariq, M. S. Osman, et al., New analytical wave structures for the (3+1)-dimensional Kadomtsev-Petviashvili and the generalized Boussinesq models and their applications, Results Phys., 14 (2019), 102491.
    [31] M. S. Osman, A. M. Wazwaz, A general bilinear form to generate different wave structures of solitons for a (3 + 1)-dimensional Boiti-Leon-Manna-Pempinelli equation, Math Meth Appl Sci., 42 (2019), 6277-6283.
    [32] R. Khalil, M. Al Horani, A. Yousef, et al., A new definition of fractional derivative, J. Comput. Appl. Math., 264 (2014), 65-70.
    [33] A. Atangana, D. Baleanu, New fractional derivative with nonlocal and non-singular kernel, theory and application to heat transfer model, Therm. Sci., 20 (2016), 763-769.
    [34] M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), 73-85.
    [35] A. Atangana, B. T. Alkahtani, Analysis of non-homogenous heat model with new trend of derivative with fractional order, Chaos Solitons Fractals, 89 (2016), 566-571.
    [36] J. H. He, Homotopy perturbation technique, Comput. Methods Appl. Mech. Eng., 178 (1999), 257-262.
    [37] J. H. He, Homotopy perturbation method: A new nonlinear analytical technique, Appl. Math. Comput., 135 (2003), 73-79.
    [38] A. H. Ghany, A. S. Okb El Babb, A. M. Zabel, et al., The fractional coupled KdV equations: Exact solutions and white noise functional approach, Chin. Phys. B, 22 (2013), 080501.
    [39] A. H. Ghany, H. Abd-Allah, Abundant solutions of Wick-type stochastic fractional 2D KdV equations, Chin. Phys. B, 23 (2014), 060503.
    [40] S. Zang, A generalized exp-function method for fractional Riccati differential equations, Comm. Fractional Calculus, 1 (2010), 48-51.
    [41] H. Holden, B. Ø sendal, J. Ubøe, et al., Stochastic Partial Differential Equations Birhkäuser, Basel, 1996.
    [42] H. Holden, B. Ø sendal, J. Ubøe, et al., Stochastic Partial Differential Equations, Springer science-Business media, LLC, 2010.
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4059) PDF downloads(480) Cited by(10)

Article outline

Figures and Tables

Figures(4)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog