Citation: Samia Bushnaq, Sajjad Ali, Kamal Shah, Muhammad Arif. Approximate solutions to nonlinear fractional order partial differential equations arising in ion-acoustic waves[J]. AIMS Mathematics, 2019, 4(3): 721-739. doi: 10.3934/math.2019.3.721
[1] | A. R. Seadawy, The solutions of the Boussinesq and generalized fifth-order KdV equations by using the direct algebraic method, Appl. Math. Sci., 6 (2012), 4081-4090. |
[2] | A. R. Seadawy, Stability analysis for two-dimensional ion-acoustic waves in quantum plasmas, Phys. Plasmas,21 (2014), Article ID: 052107. |
[3] | A. R. Seadawy, Stability analysis of traveling wave solutions for generalized coupled nonlinear KdV equations, Appl. Math. Inf. Sci., 10 (2016), 209-214. doi: 10.18576/amis/100120 |
[4] | A. R. Seadawy, Three-dimensional nonlinear modified Zakharov-Kuznetsov equation of ion-acoustic waves in a magnetized plasma, Comput. Math. Appl., 71 (2016), 201-212. doi: 10.1016/j.camwa.2015.11.006 |
[5] | A. R. Seadawy and D. Lu, Ion acoustic solitary wave solutions of three-dimensional nonlinear extended Zakharov-Kuznetsov dynamical equation in a magnetized two-ion-temperature dusty plasma, Results Phys., 6 (2016), 590-593. doi: 10.1016/j.rinp.2016.08.023 |
[6] | A. R. Seadawy, Ion acoustic solitary wave solutions of two-dimensional nonlinear Kadomtsev-Petviashvili-Burgers equation in quantum plasma, Math. Methods Appl. Sci., 40 (2017), 1598-1607. doi: 10.1002/mma.4081 |
[7] | A. R. Seadawy, Travelling-wave solutions of a weakly nonlinear two-dimensional higher-order Kadomtsev-Petviashvili dynamical equation for dispersive shallow-water waves, Eur. Phys. J. Plus, 132 (2017), Article: 29. |
[8] | A. R. Seadawy, The generalized nonlinear higher order of KdV equations from the higher order nonlinear Schrödinger equation and its solutions, Optik Int. J. Light Electron Opt., 139 (2017), 31-43. doi: 10.1016/j.ijleo.2017.03.086 |
[9] | A. R. Seadawy, Modulation instability analysis for the generalized derivative higher order nonlinear Schrödinger equation and its the bright and dark soliton solutions, J. Electromagn. Waves Appl., 31 (2017), 1353-1362. doi: 10.1080/09205071.2017.1348262 |
[10] | A. R. Seadawy, Solitary wave solutions of two-dimensional nonlinear Kadomtsev-Petviashvili dynamic equation in dust-acoustic plasmas, Pramana,89 (2017), Article: 49. |
[11] | Y. Rangkuti, B. M. Batiha and M. T. Shatnawi, Solutions of fractional Zakharov–Kuznetsov equations by fractional complex transform, Int. J. Appl. Math. Res., 5 (2016), 24-28. doi: 10.14419/ijamr.v5i1.5759 |
[12] | D. Kumar, J. Singh and S. Kumar, Numerical computation of nonlinear fractional Zakharov–Kuznetsov equation arising in ion-acoustic waves, J. Egypt. Math. Soc., 22 (2014), 373-378. doi: 10.1016/j.joems.2013.11.004 |
[13] | I. Podlubny, Fractional Differential Equations, Academic Press, Academic Press, New York, 1999. |
[14] | I. Podlubny, Geometric and physical interpretation of fractional integration and fractional differentiation, Fract. Calc. Appl. Anal., 5 (2002), 367-386. |
[15] | J. H. He, Nonlinear oscillation with fractional derivative and its applications. In: International Conference on Vibrating Engineering'98, Dalian, China,1998 (1998), 288-291. |
[16] | J. H. He, Some applications of nonlinear fractional differential equations and their approximations, Bull. Sci. Technol., 15 (1999), 86-90. |
[17] | A. Luchko and R. Groneflo, The initial value problem for some fractional differential equations with the Caputo derivative, Preprint series A08-98, Fachbreich Mathematik und Informatik, Freic Universitat Berlin, 1998. |
[18] | K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley and Sons, Inc. New York, 1993. |
[19] | K. B. Oldham and J. Spanier, The fractional calculus, New York: Academic Press, 1974. |
[20] | M. Caputo, Linear models of dissipation whose Q is almost frequency independent. Part II, Geophys. J. Int., 13 (1967), 529-539. doi: 10.1111/j.1365-246X.1967.tb02303.x |
[21] | S. Ali, S. Bushnaq, K. Shah, et al. Numerical treatment of fractional order Cauchy reaction diffusion equations, Chaos Solitons Fractals, 103 (2017), 578-587. doi: 10.1016/j.chaos.2017.07.016 |
[22] | M. M. Meerschaert and C. Tadjeran, Finite difference approximations for two-sided space-fractional partial differential equations, Appl. Numer. Math., 56 (2006), 80-90. doi: 10.1016/j.apnum.2005.02.008 |
[23] | C. Tadjeran and M. M. Meerschaert, A second-order accurate numerical method for the two-dimensional fractional diffusion equation, J. Comput. Phys., 220 (2007), 813-823. doi: 10.1016/j.jcp.2006.05.030 |
[24] | V. E. Lynch, B. A. Carrerasand, D. del-Castillo-Negrete, et al. Numerical methods for the solution of partial differential equations of fractional order, J. Comput. Phys., 192 (2003), 406-421. doi: 10.1016/j.jcp.2003.07.008 |
[25] | S. Momani and K. Al-Khaled, Numerical solutions for systems of fractional differential equations by the decomposition method, Appl. Math. Comput., 162 (2005), 1351-1365. |
[26] | S. Momani, An explicit and numerical solutions of the fractional KdV equation, Math. Comput. Simul., 70 (2005), 110-118. doi: 10.1016/j.matcom.2005.05.001 |
[27] | S. Momani, Non-perturbative analytical solutions of the space- and time-fractional Burgers equations, Chaos Solitons Fractals, 28 (2006), 930-937. doi: 10.1016/j.chaos.2005.09.002 |
[28] | S. Momani and Z. Odibat, Analytical solution of a time-fractional Navier-Stokes equation by Adomian decomposition method, Appl. Math. Comput., 177 (2006), 488-494. |
[29] | Z. Odibat and S. Momani, Approximate solutions for boundary value problems of time-fractional wave equation, Appl. Math. Comput., 181 (2006), 1351-1358. |
[30] | Z. Odibat and S. Momani, Application of variational iteration method to nonlinear differential equations of fractional order, Int. J. Nonlinear Sci. Numer. Simul., 7 (2006), 27-34. |
[31] | S. Momani and Z. Odibat, Numerical comparison of methods for solving linear differential equations of fractional order, Chaos Solitons Fractals, 31 (2007), 1248-1255. doi: 10.1016/j.chaos.2005.10.068 |
[32] | S. Momani and Z. Odibat, Numerical approach to differential equations of fractional order, J. Comput. Appl. Math., 207 (2007), 96-110. doi: 10.1016/j.cam.2006.07.015 |
[33] | Z. Odibat and S. Momani, Numerical methods for solving nonlinear partial differential equations of fractional order, Appl. Math. Modell., 32 (2008), 28-39. doi: 10.1016/j.apm.2006.10.025 |
[34] | Z. Odibat and S. Momani, Modified homotopy perturbation method: Application to quadratic Riccati differential equation of fractional order, Chaos Solitons Fractals, 36 (2008), 167-174. doi: 10.1016/j.chaos.2006.06.041 |
[35] | S. Momani and Z. Odibat, Comparison between homotopy perturbation method and the variational iteration method for linear fractional partial differential equations, Comput. Math. Appl., 54 (2007), 910-919. doi: 10.1016/j.camwa.2006.12.037 |
[36] | S. Momani and Z. Odibat, Homotopy perturbation method for nonlinear partial differential equations of fractional order, Phys. Lett. A, 365 (2007), 345-350. doi: 10.1016/j.physleta.2007.01.046 |
[37] | A. Yıldırım and Y. Gülkanat, Analytical approach to fractional Zakharov-Kuznetsov equations by He's homotopy perturbation method, Commun. Theor. Phys., 53 (2010), 1005-1010. doi: 10.1088/0253-6102/53/6/02 |
[38] | Y. Khan, N. Faraz and A. Yildirim, New soliton solutions of the generalized Zakharov equations using He's variational approach, Appl. Math. Lett., 24 (2011), 965-968. doi: 10.1016/j.aml.2011.01.006 |
[39] | S. Momani and A. Yıldırım, Analytical approximate solutions of the fractional convection-diffusion equation with nonlinear source term by He's homotopy perturbation method, Int. J. Comput. Math., 87 (2010), 1057-1065. doi: 10.1080/00207160903023581 |
[40] | V. E. Zakharov and E. A. Kuznetsov, On three-dimensional solitons, Sov. Phys., 39 (1974), 285-288. |
[41] | S. Monro and E. J. Parkes, The derivation of a modified Zakharov-Kuznetsov equation and the stability of its solutions, J. Plasma Phys., 62 (1999), 305-317. doi: 10.1017/S0022377899007874 |
[42] | S. Monro and E. J. Parkes, Stability of solitary-wave solutions to a modified Zakharov-Kuznetsov equation, J. Plasma Phys., 64 (2000), 411-426. doi: 10.1017/S0022377800008771 |
[43] | S. J. Liao, On the Proposed Analysis Technique for Nonlinear Problems and its Applications , In: Ph.D. Dissertation, Shanghai Jiao Tong University, Shanghai, China, 1992. |
[44] | J. H. He, An approximation sol. technique depending upon an articial parameter, Commun. Nonlinear Sci. Numer. Simul., 3 (1998), 92-97. doi: 10.1016/S1007-5704(98)90070-3 |
[45] | V. Marinca and N. Herisanu, Application of Optimal Homotopy Asymptotic Method for solving nonlinear equations arising in heat transfer, Int. Commun. Heat Mass Transfer, 35 (2008), 710-715. doi: 10.1016/j.icheatmasstransfer.2008.02.010 |
[46] | N. Herisanu and V. Marinca, Optimal homotopy perturbation method for a non-conservative dynamical system of a rotating electrical machine, Z. Naturforsch. A, 67 (2012), 509-516. doi: 10.5560/znb.2012-0118 |
[47] | N. Herisanu, V. Marinca, G. Madescu, et al. Dynamic response of a permanent magnet synchronous generator to a wind gust, Energies, 12 (2019), Article: 915. |
[48] | V. Marinca and N. Herisanu, On the flow of a Walters-type B' viscoelastic fluid in a vertical channel with porous wall, Int. J. Heat Mass Transfer, 79 (2014), 146-165. doi: 10.1016/j.ijheatmasstransfer.2014.07.094 |